基于遗传算法的模糊系统多阶段控制

J. Kacprzyk
{"title":"基于遗传算法的模糊系统多阶段控制","authors":"J. Kacprzyk","doi":"10.1109/FUZZY.1995.409818","DOIUrl":null,"url":null,"abstract":"We consider multistage control of a fuzzy system, given by a fuzzy state transition equation, under fuzzy constraints and fuzzy goals. First, we briefly survey previous basic solution methods of dynamic programming and branch-and-bound, which basically require some \"trickery\", and are plagued by low numerical efficiency, and then sketch Kacprzyk's (1993) approach based on possibilistic interpolative reasoning aimed at enhancing the numerical efficiency but requiring a solution of a simplified auxiliary problem, and then some \"readjusting\" of the solution obtained. Then, we propose the use of a genetic algorithm. The real coding and specially defined operations of crossover, mutation, etc. are employed. The results obtained seem to be promising.<<ETX>>","PeriodicalId":150477,"journal":{"name":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Multistage control of a fuzzy system using a genetic algorithm\",\"authors\":\"J. Kacprzyk\",\"doi\":\"10.1109/FUZZY.1995.409818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider multistage control of a fuzzy system, given by a fuzzy state transition equation, under fuzzy constraints and fuzzy goals. First, we briefly survey previous basic solution methods of dynamic programming and branch-and-bound, which basically require some \\\"trickery\\\", and are plagued by low numerical efficiency, and then sketch Kacprzyk's (1993) approach based on possibilistic interpolative reasoning aimed at enhancing the numerical efficiency but requiring a solution of a simplified auxiliary problem, and then some \\\"readjusting\\\" of the solution obtained. Then, we propose the use of a genetic algorithm. The real coding and specially defined operations of crossover, mutation, etc. are employed. The results obtained seem to be promising.<<ETX>>\",\"PeriodicalId\":150477,\"journal\":{\"name\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1995.409818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE International Conference on Fuzzy Systems.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1995.409818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在模糊约束和模糊目标条件下,研究由模糊状态转移方程给出的模糊系统的多阶段控制问题。首先,我们简要回顾了以往动态规划和分支定界的基本求解方法,这些方法基本上需要一些“技巧”,并且存在数值效率低的问题,然后概述了Kacprzyk(1993)基于可能性插值推理的方法,该方法旨在提高数值效率,但需要求解一个简化的辅助问题,然后对得到的解进行一些“调整”。然后,我们提出使用遗传算法。采用实数编码和特殊定义的交叉、变异等操作。获得的结果似乎是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multistage control of a fuzzy system using a genetic algorithm
We consider multistage control of a fuzzy system, given by a fuzzy state transition equation, under fuzzy constraints and fuzzy goals. First, we briefly survey previous basic solution methods of dynamic programming and branch-and-bound, which basically require some "trickery", and are plagued by low numerical efficiency, and then sketch Kacprzyk's (1993) approach based on possibilistic interpolative reasoning aimed at enhancing the numerical efficiency but requiring a solution of a simplified auxiliary problem, and then some "readjusting" of the solution obtained. Then, we propose the use of a genetic algorithm. The real coding and specially defined operations of crossover, mutation, etc. are employed. The results obtained seem to be promising.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信