原位土壤水分传感:利用压缩感知的测量调度和估计

Xiaopei Wu, M. Liu
{"title":"原位土壤水分传感:利用压缩感知的测量调度和估计","authors":"Xiaopei Wu, M. Liu","doi":"10.1145/2185677.2185679","DOIUrl":null,"url":null,"abstract":"We consider the problem of monitoring soil moisture evolution using a wireless network of in-situ underground sensors. To reduce cost and prolong lifetime, it is highly desirable to rely on fewer measurements and estimate with higher accuracy the original signal (soil moisture temporal evolution). In this paper we explore results from the compressive sensing (CS) literature and examine their applicability to this problem. Our main challenge lies in the selection of two matrices, the measurement matrix and a representation basis. The physical constraints of our problem make it highly nontrivial to select these matrices, so that the latter can sufficient sparsify the underlying signal while at the same time be sufficiently incoherent with the former, two common pre-conditions for CS techniques to work well. We construct a representation basis by exploiting unique features of soil moisture evolution. We show that this basis attains very good tradeoff between its ability to sparsify the signal and its incoherence with measurement matrices that are consistent with our physical constraints. Extensive numerical evaluation is performed on both real, high-resolution soil moisture data and simulated data, and through comparison with a closed-loop scheduling approach. Our results demonstrate that our approach is extremely effective in reconstructing the soil moisture process with high accuracy and low sampling rate.","PeriodicalId":231003,"journal":{"name":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","volume":"65 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"In-situ soil moisture sensing: Measurement scheduling and estimation using compressive sensing\",\"authors\":\"Xiaopei Wu, M. Liu\",\"doi\":\"10.1145/2185677.2185679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of monitoring soil moisture evolution using a wireless network of in-situ underground sensors. To reduce cost and prolong lifetime, it is highly desirable to rely on fewer measurements and estimate with higher accuracy the original signal (soil moisture temporal evolution). In this paper we explore results from the compressive sensing (CS) literature and examine their applicability to this problem. Our main challenge lies in the selection of two matrices, the measurement matrix and a representation basis. The physical constraints of our problem make it highly nontrivial to select these matrices, so that the latter can sufficient sparsify the underlying signal while at the same time be sufficiently incoherent with the former, two common pre-conditions for CS techniques to work well. We construct a representation basis by exploiting unique features of soil moisture evolution. We show that this basis attains very good tradeoff between its ability to sparsify the signal and its incoherence with measurement matrices that are consistent with our physical constraints. Extensive numerical evaluation is performed on both real, high-resolution soil moisture data and simulated data, and through comparison with a closed-loop scheduling approach. Our results demonstrate that our approach is extremely effective in reconstructing the soil moisture process with high accuracy and low sampling rate.\",\"PeriodicalId\":231003,\"journal\":{\"name\":\"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)\",\"volume\":\"65 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2185677.2185679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2185677.2185679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

我们考虑了利用地下原位传感器无线网络监测土壤湿度变化的问题。为了降低成本和延长使用寿命,非常希望依赖较少的测量并以更高的精度估计原始信号(土壤湿度时间演变)。本文探讨了压缩感知(CS)文献的结果,并检验了它们对这一问题的适用性。我们的主要挑战在于选择两个矩阵,测量矩阵和表示基。我们的问题的物理约束使得选择这些矩阵非常重要,因此后者可以充分稀疏底层信号,同时与前者充分不相干,这是CS技术良好工作的两个常见先决条件。利用土壤水分演化的独特特征,构建了表征基础。我们表明,该基在其信号稀疏化能力与与我们的物理约束一致的测量矩阵的不相干性之间实现了非常好的权衡。对真实的高分辨率土壤湿度数据和模拟数据进行了广泛的数值评估,并与闭环调度方法进行了比较。结果表明,该方法具有高精度、低采样率的土壤水分过程重构效果显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-situ soil moisture sensing: Measurement scheduling and estimation using compressive sensing
We consider the problem of monitoring soil moisture evolution using a wireless network of in-situ underground sensors. To reduce cost and prolong lifetime, it is highly desirable to rely on fewer measurements and estimate with higher accuracy the original signal (soil moisture temporal evolution). In this paper we explore results from the compressive sensing (CS) literature and examine their applicability to this problem. Our main challenge lies in the selection of two matrices, the measurement matrix and a representation basis. The physical constraints of our problem make it highly nontrivial to select these matrices, so that the latter can sufficient sparsify the underlying signal while at the same time be sufficiently incoherent with the former, two common pre-conditions for CS techniques to work well. We construct a representation basis by exploiting unique features of soil moisture evolution. We show that this basis attains very good tradeoff between its ability to sparsify the signal and its incoherence with measurement matrices that are consistent with our physical constraints. Extensive numerical evaluation is performed on both real, high-resolution soil moisture data and simulated data, and through comparison with a closed-loop scheduling approach. Our results demonstrate that our approach is extremely effective in reconstructing the soil moisture process with high accuracy and low sampling rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信