有效学习美国红十字会的捐赠者保留策略

Bin Han, I. Ryzhov, Boris Defourny
{"title":"有效学习美国红十字会的捐赠者保留策略","authors":"Bin Han, I. Ryzhov, Boris Defourny","doi":"10.1109/WSC.2013.6721404","DOIUrl":null,"url":null,"abstract":"We present a new sequential decision model for adaptively allocating a fundraising campaign budget for a non-profit organization such as the American Red Cross. The campaign outcome is related to a set of design features using linear regression. We derive the first simulation allocation procedure for simultaneously learning unknown regression parameters and unknown sampling noise. The large number of alternatives in this problem makes it difficult to evaluate the value of information. We apply convex approximation with a quantization procedure and derive a semidefinite programming relaxation to reduce the computational complexity. Simulation experiments based on historical data demonstrate the efficient performance of the approximation.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Efficient learning of donor retention strategies for the American Red Cross\",\"authors\":\"Bin Han, I. Ryzhov, Boris Defourny\",\"doi\":\"10.1109/WSC.2013.6721404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new sequential decision model for adaptively allocating a fundraising campaign budget for a non-profit organization such as the American Red Cross. The campaign outcome is related to a set of design features using linear regression. We derive the first simulation allocation procedure for simultaneously learning unknown regression parameters and unknown sampling noise. The large number of alternatives in this problem makes it difficult to evaluate the value of information. We apply convex approximation with a quantization procedure and derive a semidefinite programming relaxation to reduce the computational complexity. Simulation experiments based on historical data demonstrate the efficient performance of the approximation.\",\"PeriodicalId\":223717,\"journal\":{\"name\":\"2013 Winter Simulations Conference (WSC)\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Winter Simulations Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2013.6721404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一个新的顺序决策模型,以适应分配筹款活动预算的非营利组织,如美国红十字会。活动结果与使用线性回归的一组设计特征相关。我们推导了同时学习未知回归参数和未知采样噪声的第一个模拟分配程序。在这个问题中,大量的选择使得评估信息的价值变得困难。为了降低计算复杂度,我们采用了凸逼近和量化过程,并推导了半定规划松弛。基于历史数据的仿真实验证明了该近似方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient learning of donor retention strategies for the American Red Cross
We present a new sequential decision model for adaptively allocating a fundraising campaign budget for a non-profit organization such as the American Red Cross. The campaign outcome is related to a set of design features using linear regression. We derive the first simulation allocation procedure for simultaneously learning unknown regression parameters and unknown sampling noise. The large number of alternatives in this problem makes it difficult to evaluate the value of information. We apply convex approximation with a quantization procedure and derive a semidefinite programming relaxation to reduce the computational complexity. Simulation experiments based on historical data demonstrate the efficient performance of the approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信