{"title":"基于决策树的鲁棒分类算法","authors":"B. Chandra, P. Paul V","doi":"10.1109/ICCIS.2006.252336","DOIUrl":null,"url":null,"abstract":"Decision trees algorithms have been suggested in the past for classification of numeric as well as categorical attributes. SLIQ algorithm was proposed (Mehta et al., 1996) as an improvement over ID3 and C4.5 algorithms (Quinlan, 1993). Elegant Decision Tree Algorithm was proposed (Chandra et al. 2002) to improve the performance of SLIQ. In this paper a novel approach has been presented for the choice of split value of attributes. The issue of reducing the number of split points has been addressed. It has been shown on various datasets taken from UCI machine learning data repository that this approach gives better classification accuracy as compared to C4.5, SLIQ and Elegant Decision Tree Algorithm (EDTA) and at the same time the number of split points to be evaluated is much less compared to that of SLIQ and EDTA","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Robust Algorithm for Classification Using Decision Trees\",\"authors\":\"B. Chandra, P. Paul V\",\"doi\":\"10.1109/ICCIS.2006.252336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision trees algorithms have been suggested in the past for classification of numeric as well as categorical attributes. SLIQ algorithm was proposed (Mehta et al., 1996) as an improvement over ID3 and C4.5 algorithms (Quinlan, 1993). Elegant Decision Tree Algorithm was proposed (Chandra et al. 2002) to improve the performance of SLIQ. In this paper a novel approach has been presented for the choice of split value of attributes. The issue of reducing the number of split points has been addressed. It has been shown on various datasets taken from UCI machine learning data repository that this approach gives better classification accuracy as compared to C4.5, SLIQ and Elegant Decision Tree Algorithm (EDTA) and at the same time the number of split points to be evaluated is much less compared to that of SLIQ and EDTA\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
摘要
决策树算法在过去被建议用于数字和分类属性的分类。作为对ID3和C4.5算法的改进(Quinlan, 1993),提出了SLIQ算法(Mehta et al., 1996)。为了提高SLIQ的性能,提出了优雅决策树算法(Chandra et al. 2002)。本文提出了一种新的属性分割值选择方法。减少分界点数目的问题已得到解决。从UCI机器学习数据库中获取的各种数据集表明,与C4.5、SLIQ和优雅决策树算法(EDTA)相比,这种方法具有更好的分类精度,同时与SLIQ和EDTA相比,需要评估的分裂点数量要少得多
A Robust Algorithm for Classification Using Decision Trees
Decision trees algorithms have been suggested in the past for classification of numeric as well as categorical attributes. SLIQ algorithm was proposed (Mehta et al., 1996) as an improvement over ID3 and C4.5 algorithms (Quinlan, 1993). Elegant Decision Tree Algorithm was proposed (Chandra et al. 2002) to improve the performance of SLIQ. In this paper a novel approach has been presented for the choice of split value of attributes. The issue of reducing the number of split points has been addressed. It has been shown on various datasets taken from UCI machine learning data repository that this approach gives better classification accuracy as compared to C4.5, SLIQ and Elegant Decision Tree Algorithm (EDTA) and at the same time the number of split points to be evaluated is much less compared to that of SLIQ and EDTA