{"title":"利用积分波动的条件矩估计随机波动扩散","authors":"T. Bollerslev, Hao Zhou","doi":"10.2139/ssrn.293684","DOIUrl":null,"url":null,"abstract":"We exploit the distributional information contained in high-frequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the latent integrated volatility, the realization of which is effectively approximated by the sum of the squared high-frequency increments of the process. Our simulation evidence indicates that the resulting GMM estimator is highly reliable and accurate. Our empirical implementation based on high-frequency five-minute foreign exchange returns suggests the presence of multiple latent stochastic volatility factors and possible jumps.","PeriodicalId":278071,"journal":{"name":"Board of Governors: Finance & Economics Discussion Series (Topic)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"320","resultStr":"{\"title\":\"Estimating Stochastic Volatility Diffusion Using Conditional Moments of Integrated Volatility\",\"authors\":\"T. Bollerslev, Hao Zhou\",\"doi\":\"10.2139/ssrn.293684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exploit the distributional information contained in high-frequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the latent integrated volatility, the realization of which is effectively approximated by the sum of the squared high-frequency increments of the process. Our simulation evidence indicates that the resulting GMM estimator is highly reliable and accurate. Our empirical implementation based on high-frequency five-minute foreign exchange returns suggests the presence of multiple latent stochastic volatility factors and possible jumps.\",\"PeriodicalId\":278071,\"journal\":{\"name\":\"Board of Governors: Finance & Economics Discussion Series (Topic)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"320\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Board of Governors: Finance & Economics Discussion Series (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.293684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Board of Governors: Finance & Economics Discussion Series (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.293684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Estimating Stochastic Volatility Diffusion Using Conditional Moments of Integrated Volatility
We exploit the distributional information contained in high-frequency intraday data in constructing a simple conditional moment estimator for stochastic volatility diffusions. The estimator is based on the analytical solutions of the first two conditional moments for the latent integrated volatility, the realization of which is effectively approximated by the sum of the squared high-frequency increments of the process. Our simulation evidence indicates that the resulting GMM estimator is highly reliable and accurate. Our empirical implementation based on high-frequency five-minute foreign exchange returns suggests the presence of multiple latent stochastic volatility factors and possible jumps.