协同传感器群中基于图形模型的目标跟踪非参数技术

P. V. Paul, V. Rajbabu
{"title":"协同传感器群中基于图形模型的目标跟踪非参数技术","authors":"P. V. Paul, V. Rajbabu","doi":"10.1109/NCC.2010.5430180","DOIUrl":null,"url":null,"abstract":"Target tracking using collaborative sensor groups is an effective mechanism for reducing the scalability issues in distributed sensor networks. Using graphical models for such a sensor group together with appropriate class of nonparametric message passing algorithms, we explore efficient approaches to handle the related data fusion problems characterized by spatially distributed observations. Messages consisting of multiple Gaussian components have been efficiently handled with the help of nonparametric belief propagation techniques. The advantage of such an approach in a myopic radar network has been verified here using Monte Carlo simulations by comparing the tracking performance obtained with centralized and distributed fusion schemes.","PeriodicalId":130953,"journal":{"name":"2010 National Conference On Communications (NCC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonparametric techniques for graphical model-based target tracking in collaborative sensor groups\",\"authors\":\"P. V. Paul, V. Rajbabu\",\"doi\":\"10.1109/NCC.2010.5430180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Target tracking using collaborative sensor groups is an effective mechanism for reducing the scalability issues in distributed sensor networks. Using graphical models for such a sensor group together with appropriate class of nonparametric message passing algorithms, we explore efficient approaches to handle the related data fusion problems characterized by spatially distributed observations. Messages consisting of multiple Gaussian components have been efficiently handled with the help of nonparametric belief propagation techniques. The advantage of such an approach in a myopic radar network has been verified here using Monte Carlo simulations by comparing the tracking performance obtained with centralized and distributed fusion schemes.\",\"PeriodicalId\":130953,\"journal\":{\"name\":\"2010 National Conference On Communications (NCC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 National Conference On Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2010.5430180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 National Conference On Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2010.5430180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在分布式传感器网络中,利用协同传感器组进行目标跟踪是解决可扩展性问题的有效机制。利用传感器组的图形模型和适当的非参数消息传递算法,我们探索了处理空间分布观测值特征的相关数据融合问题的有效方法。利用非参数信念传播技术有效地处理了由多个高斯分量组成的消息。通过比较集中式和分布式融合方案的跟踪性能,通过蒙特卡洛仿真验证了该方法在近视眼雷达网络中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric techniques for graphical model-based target tracking in collaborative sensor groups
Target tracking using collaborative sensor groups is an effective mechanism for reducing the scalability issues in distributed sensor networks. Using graphical models for such a sensor group together with appropriate class of nonparametric message passing algorithms, we explore efficient approaches to handle the related data fusion problems characterized by spatially distributed observations. Messages consisting of multiple Gaussian components have been efficiently handled with the help of nonparametric belief propagation techniques. The advantage of such an approach in a myopic radar network has been verified here using Monte Carlo simulations by comparing the tracking performance obtained with centralized and distributed fusion schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信