{"title":"ψ谐波测度及其性质","authors":"Nurbek Narzillaev, Kobiljon Kuldoshev","doi":"10.56017/2181-1318.1125","DOIUrl":null,"url":null,"abstract":"It is known that, the harmonic measure of a set E, relative to a domain D, is defined by means of subharmonic functions on D. In this article we define a generalization of a harmonic measure and prove some of its properties.","PeriodicalId":127023,"journal":{"name":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ψ-harmonic measure and its properties\",\"authors\":\"Nurbek Narzillaev, Kobiljon Kuldoshev\",\"doi\":\"10.56017/2181-1318.1125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that, the harmonic measure of a set E, relative to a domain D, is defined by means of subharmonic functions on D. In this article we define a generalization of a harmonic measure and prove some of its properties.\",\"PeriodicalId\":127023,\"journal\":{\"name\":\"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56017/2181-1318.1125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56017/2181-1318.1125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It is known that, the harmonic measure of a set E, relative to a domain D, is defined by means of subharmonic functions on D. In this article we define a generalization of a harmonic measure and prove some of its properties.