{"title":"实现高性能功率放大器线性化的新方法","authors":"J. Goodman, B. Miller, G. Raz, M. Herman","doi":"10.1109/RADAR.2007.374329","DOIUrl":null,"url":null,"abstract":"Digital baseband predistortion (DBP) is not particularly well suited to linearizing wideband power amplifiers (PAs); this is due to the exorbitant price paid in computational complexity. One of the underlying reasons for the computational complexity of DBP is the inherent inefficiency of using a sufficiently deep memory and a high enough polynomial order to span the multidimensional signal space needed to mitigate PA-induced nonlinear distortion. Therefore we have developed a new mathematical method to efficiently search for and localize those regions in the multidimensional signal space that enable us to invert PA nonlinearities with a significant reduction in computational complexity. Using a wideband code division multiple access (CDMA) signal we demonstrate and compare the PA linearization performance and computational complexity of our algorithm to that of conventional DBP techniques using measured results.","PeriodicalId":367078,"journal":{"name":"2007 IEEE Radar Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Approach to Achieving High-Performance Power Amplifier Linearization\",\"authors\":\"J. Goodman, B. Miller, G. Raz, M. Herman\",\"doi\":\"10.1109/RADAR.2007.374329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital baseband predistortion (DBP) is not particularly well suited to linearizing wideband power amplifiers (PAs); this is due to the exorbitant price paid in computational complexity. One of the underlying reasons for the computational complexity of DBP is the inherent inefficiency of using a sufficiently deep memory and a high enough polynomial order to span the multidimensional signal space needed to mitigate PA-induced nonlinear distortion. Therefore we have developed a new mathematical method to efficiently search for and localize those regions in the multidimensional signal space that enable us to invert PA nonlinearities with a significant reduction in computational complexity. Using a wideband code division multiple access (CDMA) signal we demonstrate and compare the PA linearization performance and computational complexity of our algorithm to that of conventional DBP techniques using measured results.\",\"PeriodicalId\":367078,\"journal\":{\"name\":\"2007 IEEE Radar Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2007.374329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2007.374329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Approach to Achieving High-Performance Power Amplifier Linearization
Digital baseband predistortion (DBP) is not particularly well suited to linearizing wideband power amplifiers (PAs); this is due to the exorbitant price paid in computational complexity. One of the underlying reasons for the computational complexity of DBP is the inherent inefficiency of using a sufficiently deep memory and a high enough polynomial order to span the multidimensional signal space needed to mitigate PA-induced nonlinear distortion. Therefore we have developed a new mathematical method to efficiently search for and localize those regions in the multidimensional signal space that enable us to invert PA nonlinearities with a significant reduction in computational complexity. Using a wideband code division multiple access (CDMA) signal we demonstrate and compare the PA linearization performance and computational complexity of our algorithm to that of conventional DBP techniques using measured results.