海湾辩证阿拉伯语推文的自动垃圾邮件检测

Dema Alorini, D. Rawat
{"title":"海湾辩证阿拉伯语推文的自动垃圾邮件检测","authors":"Dema Alorini, D. Rawat","doi":"10.1109/ICCNC.2019.8685659","DOIUrl":null,"url":null,"abstract":"The usage of social media is increasing rapidly in the Arab region. One of the popular social networking sites for sharing news and spreading propaganda is Twitter. Spammers use these sites to disseminate adult content and false political news in Arabic tweets. Within the Arab region, distributing adult materials is illegal and some governments attempted to block malicious URLs. In this paper, we study both user and content attributes to differentiate between legitimate and illegitimate users. Then, we use those attributes with machine learning algorithms to detect spam on Twitter. We use Naive Bayes (NB) and Support Vector Machine (SVM) classification methods to find malicious contents in the tweets. Our results show that NB produces more accurate outcomes for detecting spam in Gulf Dialectical Arabic tweets.","PeriodicalId":161815,"journal":{"name":"2019 International Conference on Computing, Networking and Communications (ICNC)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic Spam Detection on Gulf Dialectical Arabic Tweets\",\"authors\":\"Dema Alorini, D. Rawat\",\"doi\":\"10.1109/ICCNC.2019.8685659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usage of social media is increasing rapidly in the Arab region. One of the popular social networking sites for sharing news and spreading propaganda is Twitter. Spammers use these sites to disseminate adult content and false political news in Arabic tweets. Within the Arab region, distributing adult materials is illegal and some governments attempted to block malicious URLs. In this paper, we study both user and content attributes to differentiate between legitimate and illegitimate users. Then, we use those attributes with machine learning algorithms to detect spam on Twitter. We use Naive Bayes (NB) and Support Vector Machine (SVM) classification methods to find malicious contents in the tweets. Our results show that NB produces more accurate outcomes for detecting spam in Gulf Dialectical Arabic tweets.\",\"PeriodicalId\":161815,\"journal\":{\"name\":\"2019 International Conference on Computing, Networking and Communications (ICNC)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Computing, Networking and Communications (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCNC.2019.8685659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2019.8685659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在阿拉伯地区,社交媒体的使用正在迅速增加。Twitter是分享新闻和传播宣传的热门社交网站之一。垃圾邮件制造者利用这些网站在阿拉伯语推特上传播成人内容和虚假政治新闻。在阿拉伯地区,传播成人材料是非法的,一些政府试图屏蔽恶意网址。在本文中,我们研究了用户和内容属性,以区分合法和非法用户。然后,我们使用这些属性和机器学习算法来检测Twitter上的垃圾邮件。我们使用朴素贝叶斯(NB)和支持向量机(SVM)分类方法来发现推文中的恶意内容。我们的研究结果表明,NB为检测海湾辩证阿拉伯语推文中的垃圾邮件产生了更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Spam Detection on Gulf Dialectical Arabic Tweets
The usage of social media is increasing rapidly in the Arab region. One of the popular social networking sites for sharing news and spreading propaganda is Twitter. Spammers use these sites to disseminate adult content and false political news in Arabic tweets. Within the Arab region, distributing adult materials is illegal and some governments attempted to block malicious URLs. In this paper, we study both user and content attributes to differentiate between legitimate and illegitimate users. Then, we use those attributes with machine learning algorithms to detect spam on Twitter. We use Naive Bayes (NB) and Support Vector Machine (SVM) classification methods to find malicious contents in the tweets. Our results show that NB produces more accurate outcomes for detecting spam in Gulf Dialectical Arabic tweets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信