基于SVM决策树的优化多类分类算法

Chen Donghui, Li Zhijing
{"title":"基于SVM决策树的优化多类分类算法","authors":"Chen Donghui, Li Zhijing","doi":"10.1109/ITCS.2010.17","DOIUrl":null,"url":null,"abstract":"An optimized multi-class classification algorithm based on SVM decision tree (SVMDT) is proposed. But by SVMDT, the generalization ability depends on the tree structure. In this paper, the relativity separability measure between classes is defined based on the distribution of the training samples to improve the generalization ability of SVMDT. SVM is extended to non-linear SVM by using kernel functions and the classification experiments prove the algorithm is more effective and feasible for classification accuracy.","PeriodicalId":340471,"journal":{"name":"2010 Second International Conference on Information Technology and Computer Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Optimized Multi-class Classification Algorithm Based on SVM Decision Tree\",\"authors\":\"Chen Donghui, Li Zhijing\",\"doi\":\"10.1109/ITCS.2010.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimized multi-class classification algorithm based on SVM decision tree (SVMDT) is proposed. But by SVMDT, the generalization ability depends on the tree structure. In this paper, the relativity separability measure between classes is defined based on the distribution of the training samples to improve the generalization ability of SVMDT. SVM is extended to non-linear SVM by using kernel functions and the classification experiments prove the algorithm is more effective and feasible for classification accuracy.\",\"PeriodicalId\":340471,\"journal\":{\"name\":\"2010 Second International Conference on Information Technology and Computer Science\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITCS.2010.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCS.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于支持向量机决策树(SVMDT)的优化多类分类算法。但通过SVMDT,泛化能力取决于树的结构。为了提高SVMDT的泛化能力,本文根据训练样本的分布定义了类间的相对性可分性度量。利用核函数将支持向量机扩展为非线性支持向量机,分类实验证明了该算法在分类精度上的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Multi-class Classification Algorithm Based on SVM Decision Tree
An optimized multi-class classification algorithm based on SVM decision tree (SVMDT) is proposed. But by SVMDT, the generalization ability depends on the tree structure. In this paper, the relativity separability measure between classes is defined based on the distribution of the training samples to improve the generalization ability of SVMDT. SVM is extended to non-linear SVM by using kernel functions and the classification experiments prove the algorithm is more effective and feasible for classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信