基于光谱时间分析的高光谱数据特征提取用于植物目标检测

A. Mathur, L. Bruce, J. Madsen
{"title":"基于光谱时间分析的高光谱数据特征提取用于植物目标检测","authors":"A. Mathur, L. Bruce, J. Madsen","doi":"10.1109/AMTRSI.2005.1469841","DOIUrl":null,"url":null,"abstract":"In this paper, the authors investigate the use of hyperspectral-multitemporal features for discriminating between two aquatic weed species, Waterhyacinth and Bulrush. Hyperspectral, multitemporal data is three- dimensional data that can be organized into a \"spectro- temporal map\" where the x-axis is time, y-axis is wavelength, and z-axis is reflectance. The authors present an algorithm based on a greedy search approach to extract pertinent features to solve the classification problem at hand.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Feature extraction via spectro-temporal analysis of hyperspectral data for vegetative target detection\",\"authors\":\"A. Mathur, L. Bruce, J. Madsen\",\"doi\":\"10.1109/AMTRSI.2005.1469841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors investigate the use of hyperspectral-multitemporal features for discriminating between two aquatic weed species, Waterhyacinth and Bulrush. Hyperspectral, multitemporal data is three- dimensional data that can be organized into a \\\"spectro- temporal map\\\" where the x-axis is time, y-axis is wavelength, and z-axis is reflectance. The authors present an algorithm based on a greedy search approach to extract pertinent features to solve the classification problem at hand.\",\"PeriodicalId\":302923,\"journal\":{\"name\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMTRSI.2005.1469841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了利用高光谱-多时相特征对水葫芦和芦苇两种水生杂草进行鉴别的方法。高光谱,多时间数据是三维数据,可以组织成一个“光谱-时间图”,其中x轴是时间,y轴是波长,z轴是反射率。作者提出了一种基于贪婪搜索的算法来提取相关特征,以解决手头的分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature extraction via spectro-temporal analysis of hyperspectral data for vegetative target detection
In this paper, the authors investigate the use of hyperspectral-multitemporal features for discriminating between two aquatic weed species, Waterhyacinth and Bulrush. Hyperspectral, multitemporal data is three- dimensional data that can be organized into a "spectro- temporal map" where the x-axis is time, y-axis is wavelength, and z-axis is reflectance. The authors present an algorithm based on a greedy search approach to extract pertinent features to solve the classification problem at hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信