Ebberth L. Paula, M. Ladeira, Rommel N. Carvalho, Thiago Marzagão
{"title":"深度学习异常检测支持巴西出口欺诈调查和反洗钱","authors":"Ebberth L. Paula, M. Ladeira, Rommel N. Carvalho, Thiago Marzagão","doi":"10.1109/ICMLA.2016.0172","DOIUrl":null,"url":null,"abstract":"Normally exports of goods and products are transactions encouraged by the governments of countries. Typically these incentives are promoted by tax exemptions or lower tax collections. However, exports fraud may occur with objectives not related to tax evasion, for example money laundering. This article presents the results obtained in implementing the unsupervised Deep Learning model to classify Brazilian exporters regarding the possibility of committing fraud in exports. Assuming that the vast majority of exporters have explanatory features of their export volume which interrelate in a standard way, we used the AutoEncoder to detect anomalous situations with regards to the data pattern. The databases used in this work come from exports of goods and products that occurred in Brazil in 2014, provided by the Secretariat of Federal Revenue of Brazil. From attributes that characterize export companies, the model was able to detect anomalies in at least twenty exporters.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":"{\"title\":\"Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti-Money Laundering\",\"authors\":\"Ebberth L. Paula, M. Ladeira, Rommel N. Carvalho, Thiago Marzagão\",\"doi\":\"10.1109/ICMLA.2016.0172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Normally exports of goods and products are transactions encouraged by the governments of countries. Typically these incentives are promoted by tax exemptions or lower tax collections. However, exports fraud may occur with objectives not related to tax evasion, for example money laundering. This article presents the results obtained in implementing the unsupervised Deep Learning model to classify Brazilian exporters regarding the possibility of committing fraud in exports. Assuming that the vast majority of exporters have explanatory features of their export volume which interrelate in a standard way, we used the AutoEncoder to detect anomalous situations with regards to the data pattern. The databases used in this work come from exports of goods and products that occurred in Brazil in 2014, provided by the Secretariat of Federal Revenue of Brazil. From attributes that characterize export companies, the model was able to detect anomalies in at least twenty exporters.\",\"PeriodicalId\":356182,\"journal\":{\"name\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"97\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2016.0172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Anomaly Detection as Support Fraud Investigation in Brazilian Exports and Anti-Money Laundering
Normally exports of goods and products are transactions encouraged by the governments of countries. Typically these incentives are promoted by tax exemptions or lower tax collections. However, exports fraud may occur with objectives not related to tax evasion, for example money laundering. This article presents the results obtained in implementing the unsupervised Deep Learning model to classify Brazilian exporters regarding the possibility of committing fraud in exports. Assuming that the vast majority of exporters have explanatory features of their export volume which interrelate in a standard way, we used the AutoEncoder to detect anomalous situations with regards to the data pattern. The databases used in this work come from exports of goods and products that occurred in Brazil in 2014, provided by the Secretariat of Federal Revenue of Brazil. From attributes that characterize export companies, the model was able to detect anomalies in at least twenty exporters.