基于仿真的动态信息流证明技术

Stephen McCamant, Michael D. Ernst
{"title":"基于仿真的动态信息流证明技术","authors":"Stephen McCamant, Michael D. Ernst","doi":"10.1145/1255329.1255336","DOIUrl":null,"url":null,"abstract":"Information-flow analysis can prevent programs from improperly revealing secret information, and a dynamic approach can make such analysis more practical, but there has been relatively little work verifying that such analyses are sound (account for all flows in a given execution). We describe a new technique for proving the soundness of dynamic information-flow analyses for policies such as end-to-end confidentiality. The proof technique simulates the behavior of the analyzed program with a pair of copies of the program: one has access to the secret information, and the other is responsible for output. The two copies are connected by a limited-bandwidth communication channel, and the amount of information passed on the channel bounds the amount of information disclosed, allowing it to be quantified. We illustrate the technique by application to a model of a practical checking tool based on binary instrumentation, which had not previously been shown to be sound","PeriodicalId":119000,"journal":{"name":"ACM Workshop on Programming Languages and Analysis for Security","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A simulation-based proof technique for dynamic information flow\",\"authors\":\"Stephen McCamant, Michael D. Ernst\",\"doi\":\"10.1145/1255329.1255336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information-flow analysis can prevent programs from improperly revealing secret information, and a dynamic approach can make such analysis more practical, but there has been relatively little work verifying that such analyses are sound (account for all flows in a given execution). We describe a new technique for proving the soundness of dynamic information-flow analyses for policies such as end-to-end confidentiality. The proof technique simulates the behavior of the analyzed program with a pair of copies of the program: one has access to the secret information, and the other is responsible for output. The two copies are connected by a limited-bandwidth communication channel, and the amount of information passed on the channel bounds the amount of information disclosed, allowing it to be quantified. We illustrate the technique by application to a model of a practical checking tool based on binary instrumentation, which had not previously been shown to be sound\",\"PeriodicalId\":119000,\"journal\":{\"name\":\"ACM Workshop on Programming Languages and Analysis for Security\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Workshop on Programming Languages and Analysis for Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1255329.1255336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Workshop on Programming Languages and Analysis for Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1255329.1255336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

信息流分析可以防止程序不恰当地泄露秘密信息,动态方法可以使这种分析更加实用,但是验证这种分析是否可靠(考虑给定执行中的所有流)的工作相对较少。我们描述了一种新技术,用于证明动态信息流分析策略(如端到端机密性)的合理性。证明技术用程序的一对副本模拟被分析程序的行为:一个具有访问秘密信息的权限,另一个负责输出。两个副本通过有限带宽通信信道连接,并且在信道上传递的信息量限制了公开的信息量,从而允许对其进行量化。我们通过应用于一个基于二进制仪器的实际检查工具模型来说明该技术,该工具以前没有被证明是可靠的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simulation-based proof technique for dynamic information flow
Information-flow analysis can prevent programs from improperly revealing secret information, and a dynamic approach can make such analysis more practical, but there has been relatively little work verifying that such analyses are sound (account for all flows in a given execution). We describe a new technique for proving the soundness of dynamic information-flow analyses for policies such as end-to-end confidentiality. The proof technique simulates the behavior of the analyzed program with a pair of copies of the program: one has access to the secret information, and the other is responsible for output. The two copies are connected by a limited-bandwidth communication channel, and the amount of information passed on the channel bounds the amount of information disclosed, allowing it to be quantified. We illustrate the technique by application to a model of a practical checking tool based on binary instrumentation, which had not previously been shown to be sound
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信