无线网络功率控制的分布式强化学习方法

A. Ornatelli, A. Tortorelli, F. Liberati
{"title":"无线网络功率控制的分布式强化学习方法","authors":"A. Ornatelli, A. Tortorelli, F. Liberati","doi":"10.1109/AIIoT52608.2021.9454208","DOIUrl":null,"url":null,"abstract":"This paper tackles the power control problem in the context of wireless networks. The development of intelligent services based on widespread smart devices with limited energy storage capabilities and high interference sensitivity is heavily bounded by the energy consumption required for communication. For addressing this issue, a decentralized control approach based on multi-agent reinforcement learning has been developed. The most interesting feature of the proposed solution consists in its scalability and low complexity. As a consequence, the proposed approach can be deployed in presence of sensor nodes with low processing and communication capabilities. Simulations are presented to validate the proposed solution.","PeriodicalId":443405,"journal":{"name":"2021 IEEE World AI IoT Congress (AIIoT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Distributed Reinforcement Learning approach for Power Control in Wireless Networks\",\"authors\":\"A. Ornatelli, A. Tortorelli, F. Liberati\",\"doi\":\"10.1109/AIIoT52608.2021.9454208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper tackles the power control problem in the context of wireless networks. The development of intelligent services based on widespread smart devices with limited energy storage capabilities and high interference sensitivity is heavily bounded by the energy consumption required for communication. For addressing this issue, a decentralized control approach based on multi-agent reinforcement learning has been developed. The most interesting feature of the proposed solution consists in its scalability and low complexity. As a consequence, the proposed approach can be deployed in presence of sensor nodes with low processing and communication capabilities. Simulations are presented to validate the proposed solution.\",\"PeriodicalId\":443405,\"journal\":{\"name\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIIoT52608.2021.9454208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIIoT52608.2021.9454208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文主要研究无线网络环境下的功率控制问题。基于储能能力有限、干扰灵敏度高的广泛智能设备的智能服务的发展,在很大程度上受到通信所需能耗的限制。为了解决这一问题,开发了一种基于多智能体强化学习的分散控制方法。该解决方案最有趣的特点在于其可伸缩性和低复杂性。因此,所提出的方法可以部署在存在低处理和通信能力的传感器节点的情况下。通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributed Reinforcement Learning approach for Power Control in Wireless Networks
This paper tackles the power control problem in the context of wireless networks. The development of intelligent services based on widespread smart devices with limited energy storage capabilities and high interference sensitivity is heavily bounded by the energy consumption required for communication. For addressing this issue, a decentralized control approach based on multi-agent reinforcement learning has been developed. The most interesting feature of the proposed solution consists in its scalability and low complexity. As a consequence, the proposed approach can be deployed in presence of sensor nodes with low processing and communication capabilities. Simulations are presented to validate the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信