基于值函数逼近算法的无人驾驶车辆路径规划

Jin-wen Hu, Man Wang, Congzhe Zhang, Chunhui Zhao, Q. Pan, Xuemei Cheng, Feng Yang, Xiaoxu Wang
{"title":"基于值函数逼近算法的无人驾驶车辆路径规划","authors":"Jin-wen Hu, Man Wang, Congzhe Zhang, Chunhui Zhao, Q. Pan, Xuemei Cheng, Feng Yang, Xiaoxu Wang","doi":"10.1109/ICCA.2019.8899906","DOIUrl":null,"url":null,"abstract":"This paper deals with the path planning problem for unmanned vehicles based on reinforcement learning. Considering the unmanned vehicles’ dynamic model, the neural network is used to approximate the value function. Besides, in order to make it more suitable for practical applications and speed up the learning process, the recursive least squares algorithm is used to eliminate the inverse operation. Then some experiments are implemented to verify the effectiveness of the proposed improved value function approximation algorithm. It is proved to have improved the generalization performance of reinforcement learning in continuous space.","PeriodicalId":130891,"journal":{"name":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning for Unmanned Vehicles Based on Value Function Approximation Algorithm\",\"authors\":\"Jin-wen Hu, Man Wang, Congzhe Zhang, Chunhui Zhao, Q. Pan, Xuemei Cheng, Feng Yang, Xiaoxu Wang\",\"doi\":\"10.1109/ICCA.2019.8899906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the path planning problem for unmanned vehicles based on reinforcement learning. Considering the unmanned vehicles’ dynamic model, the neural network is used to approximate the value function. Besides, in order to make it more suitable for practical applications and speed up the learning process, the recursive least squares algorithm is used to eliminate the inverse operation. Then some experiments are implemented to verify the effectiveness of the proposed improved value function approximation algorithm. It is proved to have improved the generalization performance of reinforcement learning in continuous space.\",\"PeriodicalId\":130891,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2019.8899906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2019.8899906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了基于强化学习的无人驾驶车辆路径规划问题。考虑到无人驾驶车辆的动态模型,采用神经网络逼近值函数。此外,为了使其更适合实际应用,加快学习过程,采用递归最小二乘算法消除了逆操作。最后通过实验验证了改进的值函数逼近算法的有效性。结果表明,该方法提高了连续空间强化学习的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path Planning for Unmanned Vehicles Based on Value Function Approximation Algorithm
This paper deals with the path planning problem for unmanned vehicles based on reinforcement learning. Considering the unmanned vehicles’ dynamic model, the neural network is used to approximate the value function. Besides, in order to make it more suitable for practical applications and speed up the learning process, the recursive least squares algorithm is used to eliminate the inverse operation. Then some experiments are implemented to verify the effectiveness of the proposed improved value function approximation algorithm. It is proved to have improved the generalization performance of reinforcement learning in continuous space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信