Patrizio Angelini, S. Chaplick, Sabine Cornelsen, G. D. Lozzo
{"title":"论图的向上平面l图","authors":"Patrizio Angelini, S. Chaplick, Sabine Cornelsen, G. D. Lozzo","doi":"10.48550/arXiv.2205.05627","DOIUrl":null,"url":null,"abstract":"In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e . Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st -graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t . It is known that a plane st-graph , i.e., an embedded st -graph in which the edge ( s, t ) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but it is biconnected and series-parallel.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Upward-Planar L-Drawings of Graphs\",\"authors\":\"Patrizio Angelini, S. Chaplick, Sabine Cornelsen, G. D. Lozzo\",\"doi\":\"10.48550/arXiv.2205.05627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e . Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st -graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t . It is known that a plane st-graph , i.e., an embedded st -graph in which the edge ( s, t ) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but it is biconnected and series-parallel.\",\"PeriodicalId\":369104,\"journal\":{\"name\":\"International Symposium on Mathematical Foundations of Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Mathematical Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.05627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.05627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e . Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st -graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t . It is known that a plane st-graph , i.e., an embedded st -graph in which the edge ( s, t ) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but it is biconnected and series-parallel.