读-k无关代数分支程序的恒等检验与下界

Matthew W. Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, Ben lee Volk
{"title":"读-k无关代数分支程序的恒等检验与下界","authors":"Matthew W. Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, Ben lee Volk","doi":"10.1145/3170709","DOIUrl":null,"url":null,"abstract":"Read-k oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ABP). In this work, we give an exponential lower bound of exp (n/kO(k)) on the width of any read-k oblivious ABP computing some explicit multilinear polynomial f that is computed by a polynomial-size depth-3 circuit. We also study the polynomial identity testing (PIT) problem for this model and obtain a white-box subexponential-time PIT algorithm. The algorithm runs in time 2Õ(n1−1/2k−1) and needs white box access only to know the order in which the variables appear in the ABP.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs\",\"authors\":\"Matthew W. Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, Ben lee Volk\",\"doi\":\"10.1145/3170709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Read-k oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ABP). In this work, we give an exponential lower bound of exp (n/kO(k)) on the width of any read-k oblivious ABP computing some explicit multilinear polynomial f that is computed by a polynomial-size depth-3 circuit. We also study the polynomial identity testing (PIT) problem for this model and obtain a white-box subexponential-time PIT algorithm. The algorithm runs in time 2Õ(n1−1/2k−1) and needs white box access only to know the order in which the variables appear in the ABP.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3170709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

读-k无关代数分支程序是对读- 1无关代数分支程序(ABP)模型的自然推广。在这项工作中,我们给出了exp (n/kO(k))的指数下界,该下界用于计算由多项式大小的depth-3电路计算的显式多线性多项式f的任何read-k无关ABP的宽度。我们还研究了该模型的多项式恒等式检验问题,得到了一个白盒次指数时间的多项式恒等式检验算法。该算法运行时间为2Õ(n1−1/2k−1),仅在知道变量在ABP中出现的顺序时才需要白盒访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs
Read-k oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ABP). In this work, we give an exponential lower bound of exp (n/kO(k)) on the width of any read-k oblivious ABP computing some explicit multilinear polynomial f that is computed by a polynomial-size depth-3 circuit. We also study the polynomial identity testing (PIT) problem for this model and obtain a white-box subexponential-time PIT algorithm. The algorithm runs in time 2Õ(n1−1/2k−1) and needs white box access only to know the order in which the variables appear in the ABP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信