用于组织病理学图像分类的深度关注特征学习

Pengxiang Wu, Hui Qu, Jingru Yi, Qiaoying Huang, Chao Chen, Dimitris N. Metaxas
{"title":"用于组织病理学图像分类的深度关注特征学习","authors":"Pengxiang Wu, Hui Qu, Jingru Yi, Qiaoying Huang, Chao Chen, Dimitris N. Metaxas","doi":"10.1109/ISBI.2019.8759267","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new deep learning-based approach for histopathology image classification. Our method is built upon standard convolutional neural networks (CNNs), and incorporates two separate attention modules for more effective feature learning. In particular, the attention modules infer the attention maps along different dimensions, which help focus the CNNs on critical image regions, as well as highlight discriminative feature channels while suppressing the irrelevant information with respect to the classification task. The attention modules are light-weight, and enhances the feature representation with small extra computational overhead. Experimental results on the publicly available BreakHis dataset demonstrate that our method outperforms the state-of-the-arts by a large margin.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Attentive Feature Learning for Histopathology Image Classification\",\"authors\":\"Pengxiang Wu, Hui Qu, Jingru Yi, Qiaoying Huang, Chao Chen, Dimitris N. Metaxas\",\"doi\":\"10.1109/ISBI.2019.8759267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new deep learning-based approach for histopathology image classification. Our method is built upon standard convolutional neural networks (CNNs), and incorporates two separate attention modules for more effective feature learning. In particular, the attention modules infer the attention maps along different dimensions, which help focus the CNNs on critical image regions, as well as highlight discriminative feature channels while suppressing the irrelevant information with respect to the classification task. The attention modules are light-weight, and enhances the feature representation with small extra computational overhead. Experimental results on the publicly available BreakHis dataset demonstrate that our method outperforms the state-of-the-arts by a large margin.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种新的基于深度学习的组织病理学图像分类方法。我们的方法建立在标准卷积神经网络(cnn)的基础上,并结合了两个独立的注意模块,以实现更有效的特征学习。特别是,注意力模块沿着不同的维度推断注意力图,这有助于cnn将注意力集中在关键图像区域上,并突出区分特征通道,同时抑制与分类任务无关的信息。注意模块是轻量级的,并且以很小的额外计算开销增强了特征表示。在公开可用的BreakHis数据集上的实验结果表明,我们的方法在很大程度上优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Attentive Feature Learning for Histopathology Image Classification
In this paper, we present a new deep learning-based approach for histopathology image classification. Our method is built upon standard convolutional neural networks (CNNs), and incorporates two separate attention modules for more effective feature learning. In particular, the attention modules infer the attention maps along different dimensions, which help focus the CNNs on critical image regions, as well as highlight discriminative feature channels while suppressing the irrelevant information with respect to the classification task. The attention modules are light-weight, and enhances the feature representation with small extra computational overhead. Experimental results on the publicly available BreakHis dataset demonstrate that our method outperforms the state-of-the-arts by a large margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信