{"title":"多机器人系统中具有动态感知和约束任务的任务分配","authors":"A. Farinelli, L. Iocchi, D. Nardi, V. Ziparo","doi":"10.1109/ROBOT.2005.1570330","DOIUrl":null,"url":null,"abstract":"In this paper we present an asynchronous distributed mechanism for allocating tasks in a team of robots. Tasks to be allocated are dynamically perceived from the environment and can be tied by execution constraints. Conflicts among team mates arise when an uncontrolled number of robots execute the same task, resulting in waste of effort and spatial conflicts. The critical aspect of task allocation in Multi Robot Systems is related to conflicts generated by limited and noisy perception capabilities of real robots. This requires significant extensions to the task allocation techniques developed for software agents. The proposed approach is able to successfully allocate roles to robots avoiding conflicts among team mates and maintaining low communication overhead. We implemented our method on AIBO robots and performed quantitative analysis in a simulated environment.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Task Assignment with Dynamic Perception and Constrained Tasks in a Multi-Robot System\",\"authors\":\"A. Farinelli, L. Iocchi, D. Nardi, V. Ziparo\",\"doi\":\"10.1109/ROBOT.2005.1570330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an asynchronous distributed mechanism for allocating tasks in a team of robots. Tasks to be allocated are dynamically perceived from the environment and can be tied by execution constraints. Conflicts among team mates arise when an uncontrolled number of robots execute the same task, resulting in waste of effort and spatial conflicts. The critical aspect of task allocation in Multi Robot Systems is related to conflicts generated by limited and noisy perception capabilities of real robots. This requires significant extensions to the task allocation techniques developed for software agents. The proposed approach is able to successfully allocate roles to robots avoiding conflicts among team mates and maintaining low communication overhead. We implemented our method on AIBO robots and performed quantitative analysis in a simulated environment.\",\"PeriodicalId\":350878,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2005.1570330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Task Assignment with Dynamic Perception and Constrained Tasks in a Multi-Robot System
In this paper we present an asynchronous distributed mechanism for allocating tasks in a team of robots. Tasks to be allocated are dynamically perceived from the environment and can be tied by execution constraints. Conflicts among team mates arise when an uncontrolled number of robots execute the same task, resulting in waste of effort and spatial conflicts. The critical aspect of task allocation in Multi Robot Systems is related to conflicts generated by limited and noisy perception capabilities of real robots. This requires significant extensions to the task allocation techniques developed for software agents. The proposed approach is able to successfully allocate roles to robots avoiding conflicts among team mates and maintaining low communication overhead. We implemented our method on AIBO robots and performed quantitative analysis in a simulated environment.