一种新的BSCs上线性分组码快速仿真的重要采样算法

Jinzhe Pan, W. Mow
{"title":"一种新的BSCs上线性分组码快速仿真的重要采样算法","authors":"Jinzhe Pan, W. Mow","doi":"10.1109/ITW44776.2019.8989120","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an Importance Sampling (IS) scheme for fast simulation of linear block codes over binary symmetric channels (BSCs). By re-formulating the IS problem into the one-dimensional Hamming weight space, we propose a novel IS estimator and derive the optimal IS distribution which will minimize the variance of the estimator. Consequently, a corresponding iterative algorithm is proposed. The effectiveness of the proposed IS algorithm compared to the state-of-the-art IS algorithm is demonstrated in the word error rate simulation of both LDPC and Polar codes.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A New Importance Sampling Algorithm for Fast Simulation of Linear Block Codes over BSCs\",\"authors\":\"Jinzhe Pan, W. Mow\",\"doi\":\"10.1109/ITW44776.2019.8989120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an Importance Sampling (IS) scheme for fast simulation of linear block codes over binary symmetric channels (BSCs). By re-formulating the IS problem into the one-dimensional Hamming weight space, we propose a novel IS estimator and derive the optimal IS distribution which will minimize the variance of the estimator. Consequently, a corresponding iterative algorithm is proposed. The effectiveness of the proposed IS algorithm compared to the state-of-the-art IS algorithm is demonstrated in the word error rate simulation of both LDPC and Polar codes.\",\"PeriodicalId\":214379,\"journal\":{\"name\":\"2019 IEEE Information Theory Workshop (ITW)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW44776.2019.8989120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种重要性抽样(IS)方案来快速模拟二进制对称信道(BSCs)上的线性分组码。通过将IS问题重新表述为一维Hamming权空间,我们提出了一种新的IS估计量,并推导出了使估计量方差最小的最优IS分布。因此,提出了相应的迭代算法。通过LDPC码和Polar码的错误率仿真,证明了所提出的IS算法与现有IS算法相比的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Importance Sampling Algorithm for Fast Simulation of Linear Block Codes over BSCs
In this paper, we propose an Importance Sampling (IS) scheme for fast simulation of linear block codes over binary symmetric channels (BSCs). By re-formulating the IS problem into the one-dimensional Hamming weight space, we propose a novel IS estimator and derive the optimal IS distribution which will minimize the variance of the estimator. Consequently, a corresponding iterative algorithm is proposed. The effectiveness of the proposed IS algorithm compared to the state-of-the-art IS algorithm is demonstrated in the word error rate simulation of both LDPC and Polar codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信