G. Dreyfus, O. Macchi, S. Marcos, O. Nerrand, L. Personnaz, P. Roussel-Ragot, D. Urbani, C. Vignat
{"title":"非线性滤波反馈神经网络的自适应训练","authors":"G. Dreyfus, O. Macchi, S. Marcos, O. Nerrand, L. Personnaz, P. Roussel-Ragot, D. Urbani, C. Vignat","doi":"10.1109/NNSP.1992.253657","DOIUrl":null,"url":null,"abstract":"The authors propose a general framework which encompasses the training of neural networks and the adaptation of filters. It is shown that neural networks can be considered as general nonlinear filters which can be trained adaptively, i.e., which can undergo continual training. A unified view of gradient-based training algorithms for feedback networks is proposed, which gives rise to new algorithms. The use of some of these algorithms is illustrated by examples of nonlinear adaptive filtering and process identification.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"1 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Adaptive training of feedback neural networks for non-linear filtering\",\"authors\":\"G. Dreyfus, O. Macchi, S. Marcos, O. Nerrand, L. Personnaz, P. Roussel-Ragot, D. Urbani, C. Vignat\",\"doi\":\"10.1109/NNSP.1992.253657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors propose a general framework which encompasses the training of neural networks and the adaptation of filters. It is shown that neural networks can be considered as general nonlinear filters which can be trained adaptively, i.e., which can undergo continual training. A unified view of gradient-based training algorithms for feedback networks is proposed, which gives rise to new algorithms. The use of some of these algorithms is illustrated by examples of nonlinear adaptive filtering and process identification.<<ETX>>\",\"PeriodicalId\":438250,\"journal\":{\"name\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"volume\":\"1 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1992.253657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive training of feedback neural networks for non-linear filtering
The authors propose a general framework which encompasses the training of neural networks and the adaptation of filters. It is shown that neural networks can be considered as general nonlinear filters which can be trained adaptively, i.e., which can undergo continual training. A unified view of gradient-based training algorithms for feedback networks is proposed, which gives rise to new algorithms. The use of some of these algorithms is illustrated by examples of nonlinear adaptive filtering and process identification.<>