{"title":"零声子线作为单杂质中心光谱学的基石","authors":"K. Rebane","doi":"10.1364/shbs.1994.wb5","DOIUrl":null,"url":null,"abstract":"1. In conventional optical addressing the diffraction limit λ3 selects a body about 1010 molecules to be under illumination. Out of them 104 are impurities, if their relative concentration is 10-6. Single impurity molecule spectroscopy (SMS) has to deal with one molecule at the back-ground of 1010molecules, whose frequencies are out of resonance with the excitation by a few thousands of cm-1 (the host molecules) and 104 molecules in the inhomogeneous impurity band distributed over about 1-1000 cm-1 around the resonance. The single molecule subject to SMS (which is really a spectroscopy, not only detection) must have a sharp and intense absorption line towering well above the spectral background created by the other 1010 molecules under illumination [1,2]. The purely electronic zero-phonon line (ZPL), “the optical analog of the Mossbauer γ-resonance line” ([3] and references therein) is a proper candidate to that role.","PeriodicalId":443330,"journal":{"name":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-Phonon Line as the Corner Stone of Single Impurity Center Spectroscopy\",\"authors\":\"K. Rebane\",\"doi\":\"10.1364/shbs.1994.wb5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1. In conventional optical addressing the diffraction limit λ3 selects a body about 1010 molecules to be under illumination. Out of them 104 are impurities, if their relative concentration is 10-6. Single impurity molecule spectroscopy (SMS) has to deal with one molecule at the back-ground of 1010molecules, whose frequencies are out of resonance with the excitation by a few thousands of cm-1 (the host molecules) and 104 molecules in the inhomogeneous impurity band distributed over about 1-1000 cm-1 around the resonance. The single molecule subject to SMS (which is really a spectroscopy, not only detection) must have a sharp and intense absorption line towering well above the spectral background created by the other 1010 molecules under illumination [1,2]. The purely electronic zero-phonon line (ZPL), “the optical analog of the Mossbauer γ-resonance line” ([3] and references therein) is a proper candidate to that role.\",\"PeriodicalId\":443330,\"journal\":{\"name\":\"Spectral Hole-Burning and Related Spectroscopies: Science and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectral Hole-Burning and Related Spectroscopies: Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/shbs.1994.wb5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectral Hole-Burning and Related Spectroscopies: Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/shbs.1994.wb5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-Phonon Line as the Corner Stone of Single Impurity Center Spectroscopy
1. In conventional optical addressing the diffraction limit λ3 selects a body about 1010 molecules to be under illumination. Out of them 104 are impurities, if their relative concentration is 10-6. Single impurity molecule spectroscopy (SMS) has to deal with one molecule at the back-ground of 1010molecules, whose frequencies are out of resonance with the excitation by a few thousands of cm-1 (the host molecules) and 104 molecules in the inhomogeneous impurity band distributed over about 1-1000 cm-1 around the resonance. The single molecule subject to SMS (which is really a spectroscopy, not only detection) must have a sharp and intense absorption line towering well above the spectral background created by the other 1010 molecules under illumination [1,2]. The purely electronic zero-phonon line (ZPL), “the optical analog of the Mossbauer γ-resonance line” ([3] and references therein) is a proper candidate to that role.