Michael Geoffrey Brown, R. DeMonbrun, Steven Lonn, Stephen J. Aguilar, Stephanie D. Teasley
{"title":"什么和什么时候:课程类型和时间对学生学习成绩的作用","authors":"Michael Geoffrey Brown, R. DeMonbrun, Steven Lonn, Stephen J. Aguilar, Stephanie D. Teasley","doi":"10.1145/2883851.2883907","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the results of a study of students' academic performance in first year general education courses. Using data from 566 students who received intensive academic advising as part of their enrollment in the institution's pre-major/general education program, we investigate individual student, organizational, and disciplinary factors that might predict a students' potential classification in an Early Warning System as well as factors that predict improvement and decline in their academic performance. Disciplinary course type (based on Biglan's [7] typology) was significantly related to a student's likelihood to enter below average performance classifications. Students were the most likely to enter a classification in fields like the natural science, mathematics, and engineering in comparison to humanities courses. We attribute these disparities in academic performance to disciplinary norms around teaching and assessment. In particular, the timing of assessments played a major role in students' ability to exit a classification. Implications for the design of Early Warning analytics systems as well as academic course planning in higher education are offered.","PeriodicalId":343844,"journal":{"name":"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge","volume":"456 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"What and when: the role of course type and timing in students' academic performance\",\"authors\":\"Michael Geoffrey Brown, R. DeMonbrun, Steven Lonn, Stephen J. Aguilar, Stephanie D. Teasley\",\"doi\":\"10.1145/2883851.2883907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the results of a study of students' academic performance in first year general education courses. Using data from 566 students who received intensive academic advising as part of their enrollment in the institution's pre-major/general education program, we investigate individual student, organizational, and disciplinary factors that might predict a students' potential classification in an Early Warning System as well as factors that predict improvement and decline in their academic performance. Disciplinary course type (based on Biglan's [7] typology) was significantly related to a student's likelihood to enter below average performance classifications. Students were the most likely to enter a classification in fields like the natural science, mathematics, and engineering in comparison to humanities courses. We attribute these disparities in academic performance to disciplinary norms around teaching and assessment. In particular, the timing of assessments played a major role in students' ability to exit a classification. Implications for the design of Early Warning analytics systems as well as academic course planning in higher education are offered.\",\"PeriodicalId\":343844,\"journal\":{\"name\":\"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge\",\"volume\":\"456 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2883851.2883907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2883851.2883907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What and when: the role of course type and timing in students' academic performance
In this paper we discuss the results of a study of students' academic performance in first year general education courses. Using data from 566 students who received intensive academic advising as part of their enrollment in the institution's pre-major/general education program, we investigate individual student, organizational, and disciplinary factors that might predict a students' potential classification in an Early Warning System as well as factors that predict improvement and decline in their academic performance. Disciplinary course type (based on Biglan's [7] typology) was significantly related to a student's likelihood to enter below average performance classifications. Students were the most likely to enter a classification in fields like the natural science, mathematics, and engineering in comparison to humanities courses. We attribute these disparities in academic performance to disciplinary norms around teaching and assessment. In particular, the timing of assessments played a major role in students' ability to exit a classification. Implications for the design of Early Warning analytics systems as well as academic course planning in higher education are offered.