随机最优控制

T. Björk
{"title":"随机最优控制","authors":"T. Björk","doi":"10.1093/oso/9780198851615.003.0025","DOIUrl":null,"url":null,"abstract":"We study a general stochastic optimal control problem within the framework of a controlled SDE. This problem is studied using dynamic programming and we derive the Hamilton–Jacobi–Bellman PDE. By stating and proving a verification theorem we show that solving this PDE is equivalent to solving the control problem. As an example the theory is then applied to the linear quadratic regulator.","PeriodicalId":311283,"journal":{"name":"Arbitrage Theory in Continuous Time","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Optimal Control\",\"authors\":\"T. Björk\",\"doi\":\"10.1093/oso/9780198851615.003.0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a general stochastic optimal control problem within the framework of a controlled SDE. This problem is studied using dynamic programming and we derive the Hamilton–Jacobi–Bellman PDE. By stating and proving a verification theorem we show that solving this PDE is equivalent to solving the control problem. As an example the theory is then applied to the linear quadratic regulator.\",\"PeriodicalId\":311283,\"journal\":{\"name\":\"Arbitrage Theory in Continuous Time\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arbitrage Theory in Continuous Time\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198851615.003.0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arbitrage Theory in Continuous Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198851615.003.0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类受控SDE框架下的一般随机最优控制问题。利用动态规划方法对该问题进行了研究,导出了Hamilton-Jacobi-Bellman偏微分方程。通过陈述和证明一个验证定理,我们证明解这个PDE等价于解控制问题。作为一个例子,该理论随后应用于线性二次型调节器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Optimal Control
We study a general stochastic optimal control problem within the framework of a controlled SDE. This problem is studied using dynamic programming and we derive the Hamilton–Jacobi–Bellman PDE. By stating and proving a verification theorem we show that solving this PDE is equivalent to solving the control problem. As an example the theory is then applied to the linear quadratic regulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信