量子计算入门:经验报告

Jonathan Liu, Diana Franklin
{"title":"量子计算入门:经验报告","authors":"Jonathan Liu, Diana Franklin","doi":"10.1145/3545945.3569836","DOIUrl":null,"url":null,"abstract":"Quantum computing presents a paradigmatic shift in the field of computation, in which unintuitive properties of quantum mechanics can be harnessed to change the way we approach a wide range of problems. However, due to the mathematics and physics perspective through which quantum computing is traditionally presented, most resources are inaccessible to many undergraduate students, let alone the general public. It is thus imperative to develop resources and best-practices for quantum computing instruction accessible to students at all levels. In this paper, we describe the development and results of our Massive Open Online Course (MOOC) \"Introduction to Quantum Computing for Everyone.\" This course presents an introduction to quantum computing with few technical prerequisites. In the first half of the course, quantum computing concepts are introduced with a unique, purely visual representation, allowing students to develop conceptual understanding without the burden of learning new mathematical notation. In the second half, students are taught the formal notation for concepts and objects already introduced, reinforcing student understanding of these concepts and providing an applicable context for the technical material. Most notably, we find that introducing the math content in the curriculum's second stage led to no drops in engagement or student performance, suggesting that our curriculum's spiral structure eased the technical burden.","PeriodicalId":371326,"journal":{"name":"Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Introduction to Quantum Computing for Everyone: Experience Report\",\"authors\":\"Jonathan Liu, Diana Franklin\",\"doi\":\"10.1145/3545945.3569836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing presents a paradigmatic shift in the field of computation, in which unintuitive properties of quantum mechanics can be harnessed to change the way we approach a wide range of problems. However, due to the mathematics and physics perspective through which quantum computing is traditionally presented, most resources are inaccessible to many undergraduate students, let alone the general public. It is thus imperative to develop resources and best-practices for quantum computing instruction accessible to students at all levels. In this paper, we describe the development and results of our Massive Open Online Course (MOOC) \\\"Introduction to Quantum Computing for Everyone.\\\" This course presents an introduction to quantum computing with few technical prerequisites. In the first half of the course, quantum computing concepts are introduced with a unique, purely visual representation, allowing students to develop conceptual understanding without the burden of learning new mathematical notation. In the second half, students are taught the formal notation for concepts and objects already introduced, reinforcing student understanding of these concepts and providing an applicable context for the technical material. Most notably, we find that introducing the math content in the curriculum's second stage led to no drops in engagement or student performance, suggesting that our curriculum's spiral structure eased the technical burden.\",\"PeriodicalId\":371326,\"journal\":{\"name\":\"Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3545945.3569836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545945.3569836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

量子计算呈现了计算领域的范式转变,其中量子力学的非直观属性可以被利用来改变我们处理广泛问题的方式。然而,由于量子计算传统上是通过数学和物理的角度来呈现的,大多数资源对于许多本科生来说是无法访问的,更不用说普通大众了。因此,必须为各级学生开发量子计算教学资源和最佳实践。在本文中,我们描述了我们的大规模在线开放课程(MOOC)的发展和成果。《量子计算入门》本课程介绍量子计算的基本技术前提。在课程的前半部分,量子计算概念以一种独特的、纯粹的视觉表现形式介绍,允许学生在没有学习新的数学符号的负担的情况下发展概念理解。在后半部分,学生学习已经介绍过的概念和对象的正式符号,加强学生对这些概念的理解,并为技术材料提供适用的背景。最值得注意的是,我们发现在课程的第二阶段引入数学内容并没有导致参与度或学生表现的下降,这表明我们的课程螺旋结构减轻了技术负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introduction to Quantum Computing for Everyone: Experience Report
Quantum computing presents a paradigmatic shift in the field of computation, in which unintuitive properties of quantum mechanics can be harnessed to change the way we approach a wide range of problems. However, due to the mathematics and physics perspective through which quantum computing is traditionally presented, most resources are inaccessible to many undergraduate students, let alone the general public. It is thus imperative to develop resources and best-practices for quantum computing instruction accessible to students at all levels. In this paper, we describe the development and results of our Massive Open Online Course (MOOC) "Introduction to Quantum Computing for Everyone." This course presents an introduction to quantum computing with few technical prerequisites. In the first half of the course, quantum computing concepts are introduced with a unique, purely visual representation, allowing students to develop conceptual understanding without the burden of learning new mathematical notation. In the second half, students are taught the formal notation for concepts and objects already introduced, reinforcing student understanding of these concepts and providing an applicable context for the technical material. Most notably, we find that introducing the math content in the curriculum's second stage led to no drops in engagement or student performance, suggesting that our curriculum's spiral structure eased the technical burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信