用动态在线优化改进异构系统中的调度技术

Marcin Bogdański, Peter R. Lewis, Tobias Becker, X. Yao
{"title":"用动态在线优化改进异构系统中的调度技术","authors":"Marcin Bogdański, Peter R. Lewis, Tobias Becker, X. Yao","doi":"10.1109/CISIS.2011.81","DOIUrl":null,"url":null,"abstract":"Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.","PeriodicalId":203206,"journal":{"name":"2011 International Conference on Complex, Intelligent, and Software Intensive Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Improving Scheduling Techniques in Heterogeneous Systems with Dynamic, On-Line Optimisations\",\"authors\":\"Marcin Bogdański, Peter R. Lewis, Tobias Becker, X. Yao\",\"doi\":\"10.1109/CISIS.2011.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.\",\"PeriodicalId\":203206,\"journal\":{\"name\":\"2011 International Conference on Complex, Intelligent, and Software Intensive Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Complex, Intelligent, and Software Intensive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISIS.2011.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Complex, Intelligent, and Software Intensive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISIS.2011.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

计算性能越来越依赖于并行性,许多系统依赖于gpu和fpga等异构资源来加速计算密集型应用程序。然而,这种异构系统的实现通常是手工制作的,并针对一种计算场景进行优化,当应用程序参数发生变化时,保持高性能可能是一项挑战。在本文中,我们证明了机器学习可以帮助根据传入工作负载的变化特征动态选择任务调度和负载平衡的参数。我们使用一个金融期权定价应用程序作为案例研究。我们提出了一个用gpu和fpga在异构系统上处理金融任务的模拟,并展示了动态的在线优化如何改进这样的系统。我们比较了在线和批处理算法,我们也考虑了没有动态优化的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Scheduling Techniques in Heterogeneous Systems with Dynamic, On-Line Optimisations
Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信