使用BiCGStab方法的GPU版本扩展ILUPACK

J. Aliaga, Ernesto Dufrechu, P. Ezzatti, E. S. Quintana‐Ortí
{"title":"使用BiCGStab方法的GPU版本扩展ILUPACK","authors":"J. Aliaga, Ernesto Dufrechu, P. Ezzatti, E. S. Quintana‐Ortí","doi":"10.1109/CLEI.2018.00092","DOIUrl":null,"url":null,"abstract":"The solution of sparse linear systems of large dimension is a important stage in problems that span a diverse kind of applications. For this reason, a number of iterative solvers have been developed, among which ILUPACK integrates an inverse-based multilevel ILU preconditioner with appealing numerical properties. In this work we extend the iterative methods available in ILUPACK. Concretely, we develop a data-parallel implementation of the BiCGStab method for GPUs hardware platforms that completes the functionality of ILUPACK-preconditioned solvers for general linear systems. The experimental evaluation carried out in a hybrid hardware platform, including a multicore CPU and a Nvidia GPU, shows that our novel proposal reaches speedups values between 5 and 10× when is compared with the CPU counterpart and values of up to 8.2× runtime reduction over other GPU solvers.","PeriodicalId":379986,"journal":{"name":"2018 XLIV Latin American Computer Conference (CLEI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extending ILUPACK with a GPU Version of the BiCGStab Method\",\"authors\":\"J. Aliaga, Ernesto Dufrechu, P. Ezzatti, E. S. Quintana‐Ortí\",\"doi\":\"10.1109/CLEI.2018.00092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solution of sparse linear systems of large dimension is a important stage in problems that span a diverse kind of applications. For this reason, a number of iterative solvers have been developed, among which ILUPACK integrates an inverse-based multilevel ILU preconditioner with appealing numerical properties. In this work we extend the iterative methods available in ILUPACK. Concretely, we develop a data-parallel implementation of the BiCGStab method for GPUs hardware platforms that completes the functionality of ILUPACK-preconditioned solvers for general linear systems. The experimental evaluation carried out in a hybrid hardware platform, including a multicore CPU and a Nvidia GPU, shows that our novel proposal reaches speedups values between 5 and 10× when is compared with the CPU counterpart and values of up to 8.2× runtime reduction over other GPU solvers.\",\"PeriodicalId\":379986,\"journal\":{\"name\":\"2018 XLIV Latin American Computer Conference (CLEI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 XLIV Latin American Computer Conference (CLEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEI.2018.00092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XLIV Latin American Computer Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI.2018.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大维稀疏线性系统的求解是涉及多种应用问题的一个重要阶段。为此,开发了许多迭代求解器,其中ILUPACK集成了一个基于逆的多电平ILU预调节器,具有吸引人的数值性质。在这项工作中,我们扩展了ILUPACK中可用的迭代方法。具体而言,我们开发了一种用于gpu硬件平台的BiCGStab方法的数据并行实现,该方法完成了一般线性系统的ilupack预条件解算器的功能。在包括多核CPU和Nvidia GPU的混合硬件平台上进行的实验评估表明,与CPU相比,我们的新方案的加速值在5到10倍之间,与其他GPU解决方案相比,运行时间减少高达8.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending ILUPACK with a GPU Version of the BiCGStab Method
The solution of sparse linear systems of large dimension is a important stage in problems that span a diverse kind of applications. For this reason, a number of iterative solvers have been developed, among which ILUPACK integrates an inverse-based multilevel ILU preconditioner with appealing numerical properties. In this work we extend the iterative methods available in ILUPACK. Concretely, we develop a data-parallel implementation of the BiCGStab method for GPUs hardware platforms that completes the functionality of ILUPACK-preconditioned solvers for general linear systems. The experimental evaluation carried out in a hybrid hardware platform, including a multicore CPU and a Nvidia GPU, shows that our novel proposal reaches speedups values between 5 and 10× when is compared with the CPU counterpart and values of up to 8.2× runtime reduction over other GPU solvers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信