基于谓词-参数元组的句子释义模式与错误分析

Sung-Pil Choi, Sa-kwang Song, Sung-Hyon Myaeng
{"title":"基于谓词-参数元组的句子释义模式与错误分析","authors":"Sung-Pil Choi, Sa-kwang Song, Sung-Hyon Myaeng","doi":"10.3745/KIPSTB.2012.19B.2.135","DOIUrl":null,"url":null,"abstract":"This paper proposes a model for recognizing sentential paraphrases through Predicate-Argument Tuple (PAT)-based approximate alignment between two texts. We cast the paraphrase recognition problem as a binary classification by defining and applying various alignment features which could effectively express the semantic relatedness between two sentences. Experiment confirmed the potential of our approach and error analysis revealed various paraphrase patterns not being solved by our system, which can help us devise methods for further performance improvement.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Sentential Paraphrase Patterns and Errors through Predicate-Argument Tuple-based Approximate Alignment\",\"authors\":\"Sung-Pil Choi, Sa-kwang Song, Sung-Hyon Myaeng\",\"doi\":\"10.3745/KIPSTB.2012.19B.2.135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a model for recognizing sentential paraphrases through Predicate-Argument Tuple (PAT)-based approximate alignment between two texts. We cast the paraphrase recognition problem as a binary classification by defining and applying various alignment features which could effectively express the semantic relatedness between two sentences. Experiment confirmed the potential of our approach and error analysis revealed various paraphrase patterns not being solved by our system, which can help us devise methods for further performance improvement.\",\"PeriodicalId\":122700,\"journal\":{\"name\":\"The Kips Transactions:partb\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Kips Transactions:partb\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/KIPSTB.2012.19B.2.135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.2.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于谓词-参数元组(PAT)的句子释义识别模型。我们通过定义和应用各种能够有效表达两句之间语义关联的对齐特征,将释义识别问题转化为一个二元分类问题。实验证实了我们的方法的潜力,错误分析揭示了我们的系统无法解决的各种释义模式,这可以帮助我们设计进一步改进性能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Sentential Paraphrase Patterns and Errors through Predicate-Argument Tuple-based Approximate Alignment
This paper proposes a model for recognizing sentential paraphrases through Predicate-Argument Tuple (PAT)-based approximate alignment between two texts. We cast the paraphrase recognition problem as a binary classification by defining and applying various alignment features which could effectively express the semantic relatedness between two sentences. Experiment confirmed the potential of our approach and error analysis revealed various paraphrase patterns not being solved by our system, which can help us devise methods for further performance improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信