Lukas Baumgartner, Ronny Bergmann, R. Herzog, S. Schmidt, Jos'e Vidal-N'unez
{"title":"三角网格上分段常数函数的全广义变分及其在成像中的应用","authors":"Lukas Baumgartner, Ronny Bergmann, R. Herzog, S. Schmidt, Jos'e Vidal-N'unez","doi":"10.1137/22m1505281","DOIUrl":null,"url":null,"abstract":"We propose a novel discrete concept for the total generalized variation (TGV), which has originally been derived to reduce the staircasing effect in classical total variation (TV) regularization, in image denoising problems. We describe discrete, second-order TGV for piecewise constant functions on triangular meshes, thus allowing the TGV functional to be applied to more general data structures than pixel images, and in particular in the context of finite element discretizations. Particular attention is given to the description of the kernel of the TGV functional, which, in the continuous setting, consists of linear polynomials. We discuss how to take advantage of this kernel structure using piecewise constant functions on triangular meshes. Numerical experiments include denoising and inpainting problems for images defined on non-standard grids, including data from a 3D scanner.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Total Generalized Variation for Piecewise Constant Functions on Triangular Meshes with Applications in Imaging\",\"authors\":\"Lukas Baumgartner, Ronny Bergmann, R. Herzog, S. Schmidt, Jos'e Vidal-N'unez\",\"doi\":\"10.1137/22m1505281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel discrete concept for the total generalized variation (TGV), which has originally been derived to reduce the staircasing effect in classical total variation (TV) regularization, in image denoising problems. We describe discrete, second-order TGV for piecewise constant functions on triangular meshes, thus allowing the TGV functional to be applied to more general data structures than pixel images, and in particular in the context of finite element discretizations. Particular attention is given to the description of the kernel of the TGV functional, which, in the continuous setting, consists of linear polynomials. We discuss how to take advantage of this kernel structure using piecewise constant functions on triangular meshes. Numerical experiments include denoising and inpainting problems for images defined on non-standard grids, including data from a 3D scanner.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1505281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1505281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Total Generalized Variation for Piecewise Constant Functions on Triangular Meshes with Applications in Imaging
We propose a novel discrete concept for the total generalized variation (TGV), which has originally been derived to reduce the staircasing effect in classical total variation (TV) regularization, in image denoising problems. We describe discrete, second-order TGV for piecewise constant functions on triangular meshes, thus allowing the TGV functional to be applied to more general data structures than pixel images, and in particular in the context of finite element discretizations. Particular attention is given to the description of the kernel of the TGV functional, which, in the continuous setting, consists of linear polynomials. We discuss how to take advantage of this kernel structure using piecewise constant functions on triangular meshes. Numerical experiments include denoising and inpainting problems for images defined on non-standard grids, including data from a 3D scanner.