基于人工神经网络的自适应天线波束形成阵列

P. Wells, P.C.J. Hill
{"title":"基于人工神经网络的自适应天线波束形成阵列","authors":"P. Wells, P.C.J. Hill","doi":"10.1109/NNAT.1993.586046","DOIUrl":null,"url":null,"abstract":"Estimation of the angle of am'val (AOA) of radio signals to an antenna array is currently determined by classical spectral, paramehic or eigen-decomposition techniques [ I ] , Neural networks can provide an alternative inverse processing solution allowing the AOA to be determined directly from the received signal data. Moreover, suitably modified layered networks can actually eliminate the need for weight training entirely .","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Antenna Beamforming Arrays Using Artificial Neural Networks\",\"authors\":\"P. Wells, P.C.J. Hill\",\"doi\":\"10.1109/NNAT.1993.586046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of the angle of am'val (AOA) of radio signals to an antenna array is currently determined by classical spectral, paramehic or eigen-decomposition techniques [ I ] , Neural networks can provide an alternative inverse processing solution allowing the AOA to be determined directly from the received signal data. Moreover, suitably modified layered networks can actually eliminate the need for weight training entirely .\",\"PeriodicalId\":164805,\"journal\":{\"name\":\"Workshop on Neural Network Applications and Tools\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Neural Network Applications and Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNAT.1993.586046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无线电信号对天线阵列的调峰角(AOA)的估计目前是由经典的频谱、参数或特征分解技术确定的[I],神经网络可以提供一种替代的逆处理解决方案,允许直接从接收到的信号数据确定AOA。此外,适当修改的分层网络实际上可以完全消除对重量训练的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Antenna Beamforming Arrays Using Artificial Neural Networks
Estimation of the angle of am'val (AOA) of radio signals to an antenna array is currently determined by classical spectral, paramehic or eigen-decomposition techniques [ I ] , Neural networks can provide an alternative inverse processing solution allowing the AOA to be determined directly from the received signal data. Moreover, suitably modified layered networks can actually eliminate the need for weight training entirely .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信