柔性、可重构计算的非线性动力学与混沌

Behnam Kia, W. Ditto
{"title":"柔性、可重构计算的非线性动力学与混沌","authors":"Behnam Kia, W. Ditto","doi":"10.1109/ICRC.2017.8123679","DOIUrl":null,"url":null,"abstract":"Nonlinear dynamics and chaos contribute flexibility and rich, complex behavior to nonlinear systems. Transistors and transistor circuits are inherently nonlinear. It was demonstrated that this nonlinearity and the flexibility that comes with it can be utilized to implement flexible, reconfigurable computing, and such approaches are called Nonlinear Dynamics-Based Computing. In nonlinear dynamics-based computing, a very same circuit can be reprogrammed to implement and perform many different types of computations, thereby increasing the amount of computing that can be obtained per transistor. For example, at the gate level, the same transistor circuit can implement all different logical gates, such as AND gate or XOR gate. Or at the system level, the same transistor circuit can implement a variety of different higher-level functions, such as addition or subtraction. Another remarkable feature of nonlinear dynamics-based computing is that because different types of functions or operations coexist within the dynamics of the circuit, reprograming and reconfiguring is nearly instant. A recently fabricated VLSI chip for nonlinear dynamics-based computing was shown to be capable of implementing a new function in each clock cycle, with no need for separate reprograming time in between clock cycles. In this paper we briefly review this new approach to computing, present some of our latest results, discuss the implications and possible advantages of nonlinear dynamics-based computing, and plot potential horizons for this exciting new approach to computing.","PeriodicalId":125114,"journal":{"name":"2017 IEEE International Conference on Rebooting Computing (ICRC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Dynamics and Chaos for Fleixble, Reconfigurable Computing\",\"authors\":\"Behnam Kia, W. Ditto\",\"doi\":\"10.1109/ICRC.2017.8123679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear dynamics and chaos contribute flexibility and rich, complex behavior to nonlinear systems. Transistors and transistor circuits are inherently nonlinear. It was demonstrated that this nonlinearity and the flexibility that comes with it can be utilized to implement flexible, reconfigurable computing, and such approaches are called Nonlinear Dynamics-Based Computing. In nonlinear dynamics-based computing, a very same circuit can be reprogrammed to implement and perform many different types of computations, thereby increasing the amount of computing that can be obtained per transistor. For example, at the gate level, the same transistor circuit can implement all different logical gates, such as AND gate or XOR gate. Or at the system level, the same transistor circuit can implement a variety of different higher-level functions, such as addition or subtraction. Another remarkable feature of nonlinear dynamics-based computing is that because different types of functions or operations coexist within the dynamics of the circuit, reprograming and reconfiguring is nearly instant. A recently fabricated VLSI chip for nonlinear dynamics-based computing was shown to be capable of implementing a new function in each clock cycle, with no need for separate reprograming time in between clock cycles. In this paper we briefly review this new approach to computing, present some of our latest results, discuss the implications and possible advantages of nonlinear dynamics-based computing, and plot potential horizons for this exciting new approach to computing.\",\"PeriodicalId\":125114,\"journal\":{\"name\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Rebooting Computing (ICRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRC.2017.8123679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2017.8123679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非线性动力学和混沌为非线性系统提供了灵活性和丰富、复杂的行为。晶体管和晶体管电路本质上是非线性的。研究表明,这种非线性和随之而来的灵活性可以用来实现灵活的、可重构的计算,这种方法被称为基于非线性动态的计算。在基于非线性动力学的计算中,一个非常相同的电路可以被重新编程来实现和执行许多不同类型的计算,从而增加每个晶体管可以获得的计算量。例如,在门级,同一晶体管电路可以实现所有不同的逻辑门,如与门或异或门。或者在系统级,同一个晶体管电路可以实现各种不同的高级功能,如加法或减法。基于非线性动态计算的另一个显著特征是,由于不同类型的功能或操作共存于电路的动态中,重新编程和重新配置几乎是即时的。最近制造的用于非线性动态计算的VLSI芯片被证明能够在每个时钟周期内实现新功能,而不需要在时钟周期之间单独重新编程时间。在本文中,我们简要回顾了这种新的计算方法,介绍了我们的一些最新结果,讨论了基于非线性动力学的计算的含义和可能的优势,并描绘了这种令人兴奋的计算新方法的潜在前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Dynamics and Chaos for Fleixble, Reconfigurable Computing
Nonlinear dynamics and chaos contribute flexibility and rich, complex behavior to nonlinear systems. Transistors and transistor circuits are inherently nonlinear. It was demonstrated that this nonlinearity and the flexibility that comes with it can be utilized to implement flexible, reconfigurable computing, and such approaches are called Nonlinear Dynamics-Based Computing. In nonlinear dynamics-based computing, a very same circuit can be reprogrammed to implement and perform many different types of computations, thereby increasing the amount of computing that can be obtained per transistor. For example, at the gate level, the same transistor circuit can implement all different logical gates, such as AND gate or XOR gate. Or at the system level, the same transistor circuit can implement a variety of different higher-level functions, such as addition or subtraction. Another remarkable feature of nonlinear dynamics-based computing is that because different types of functions or operations coexist within the dynamics of the circuit, reprograming and reconfiguring is nearly instant. A recently fabricated VLSI chip for nonlinear dynamics-based computing was shown to be capable of implementing a new function in each clock cycle, with no need for separate reprograming time in between clock cycles. In this paper we briefly review this new approach to computing, present some of our latest results, discuss the implications and possible advantages of nonlinear dynamics-based computing, and plot potential horizons for this exciting new approach to computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信