Rajveer Nehra, A. Win, M. Eaton, R. Shahrokhshahi, N. Sridhar, T. Gerrits, A. Lita, S. Nam, O. Pfister
{"title":"使用光子数分辨测量的量子态工程和态层析成像(会议报告)","authors":"Rajveer Nehra, A. Win, M. Eaton, R. Shahrokhshahi, N. Sridhar, T. Gerrits, A. Lita, S. Nam, O. Pfister","doi":"10.1117/12.2527491","DOIUrl":null,"url":null,"abstract":"Quantum state engineering and state characterization is a key task in quantum information processing in both discrete and continuous variable systems in the optical domain. In particular, quantum states with non-Gaussian (i.e., non-positive) Wigner quasiprobability distribution functions are crucial to universal, fault-tolerant quantum computing with continuous variables. In this talk, we present our recent results on single-photon Fock state tomography using Photon-Number-Resolving (PNR) measurements. We generated a highly pure narrow-band single-photon Fock state by heralding cavity-enhanced spontaneous-parametric-downconversion from a PPKTP optical parametric oscillator. The Wigner function was reconstructed with photon statistics obtained using superconducting transition-edge sensors with an overall system efficiency of 58(2)%. We then discuss quantum state engineering for pure displaced single-photon Fock states, optical cat states, and approximate GKP states using coherent states and single-photon states along with linear optics and PNR measurements. We report our experimental progress for the same.","PeriodicalId":314895,"journal":{"name":"Quantum Communications and Quantum Imaging XVII","volume":"886 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum state engineering and state tomography using photon-number-resolving measurements (Conference Presentation)\",\"authors\":\"Rajveer Nehra, A. Win, M. Eaton, R. Shahrokhshahi, N. Sridhar, T. Gerrits, A. Lita, S. Nam, O. Pfister\",\"doi\":\"10.1117/12.2527491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum state engineering and state characterization is a key task in quantum information processing in both discrete and continuous variable systems in the optical domain. In particular, quantum states with non-Gaussian (i.e., non-positive) Wigner quasiprobability distribution functions are crucial to universal, fault-tolerant quantum computing with continuous variables. In this talk, we present our recent results on single-photon Fock state tomography using Photon-Number-Resolving (PNR) measurements. We generated a highly pure narrow-band single-photon Fock state by heralding cavity-enhanced spontaneous-parametric-downconversion from a PPKTP optical parametric oscillator. The Wigner function was reconstructed with photon statistics obtained using superconducting transition-edge sensors with an overall system efficiency of 58(2)%. We then discuss quantum state engineering for pure displaced single-photon Fock states, optical cat states, and approximate GKP states using coherent states and single-photon states along with linear optics and PNR measurements. We report our experimental progress for the same.\",\"PeriodicalId\":314895,\"journal\":{\"name\":\"Quantum Communications and Quantum Imaging XVII\",\"volume\":\"886 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Communications and Quantum Imaging XVII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2527491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Communications and Quantum Imaging XVII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2527491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum state engineering and state tomography using photon-number-resolving measurements (Conference Presentation)
Quantum state engineering and state characterization is a key task in quantum information processing in both discrete and continuous variable systems in the optical domain. In particular, quantum states with non-Gaussian (i.e., non-positive) Wigner quasiprobability distribution functions are crucial to universal, fault-tolerant quantum computing with continuous variables. In this talk, we present our recent results on single-photon Fock state tomography using Photon-Number-Resolving (PNR) measurements. We generated a highly pure narrow-band single-photon Fock state by heralding cavity-enhanced spontaneous-parametric-downconversion from a PPKTP optical parametric oscillator. The Wigner function was reconstructed with photon statistics obtained using superconducting transition-edge sensors with an overall system efficiency of 58(2)%. We then discuss quantum state engineering for pure displaced single-photon Fock states, optical cat states, and approximate GKP states using coherent states and single-photon states along with linear optics and PNR measurements. We report our experimental progress for the same.