自动2D立体视频转换为3D电视

Xichen Zhou, B. Desai, Charalambos (Charis) Poullis
{"title":"自动2D立体视频转换为3D电视","authors":"Xichen Zhou, B. Desai, Charalambos (Charis) Poullis","doi":"10.1109/3DTV.2017.8280410","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel technique for automatically converting 2D videos to stereoscopic. Uniquely, the proposed approach leverages the strengths of Deep Learning to address the complex problem of depth estimation from a single image. A Convolutional Neural Network is trained on input RGB images and their corresponding depths maps. We reformulate and simplify the process of generating the second camera's depth map and present how this can be used to render an anaglyph image. The anaglyph image was used for demonstration only because of the easy and wide availability of red/cyan glasses however, this does not limit the applicability of the proposed technique to other stereo forms. Finally, we present preliminary results and discuss the challenges.","PeriodicalId":279013,"journal":{"name":"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic 2D to stereoscopic video conversion for 3D TVS\",\"authors\":\"Xichen Zhou, B. Desai, Charalambos (Charis) Poullis\",\"doi\":\"10.1109/3DTV.2017.8280410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel technique for automatically converting 2D videos to stereoscopic. Uniquely, the proposed approach leverages the strengths of Deep Learning to address the complex problem of depth estimation from a single image. A Convolutional Neural Network is trained on input RGB images and their corresponding depths maps. We reformulate and simplify the process of generating the second camera's depth map and present how this can be used to render an anaglyph image. The anaglyph image was used for demonstration only because of the easy and wide availability of red/cyan glasses however, this does not limit the applicability of the proposed technique to other stereo forms. Finally, we present preliminary results and discuss the challenges.\",\"PeriodicalId\":279013,\"journal\":{\"name\":\"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DTV.2017.8280410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2017.8280410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种将二维视频自动转换为立体视频的新技术。独特的是,该方法利用深度学习的优势来解决从单个图像进行深度估计的复杂问题。卷积神经网络在输入的RGB图像及其相应的深度图上进行训练。我们重新制定和简化了生成第二个相机的深度图的过程,并介绍了如何使用它来渲染浮雕图像。该浮雕图像仅用于演示,因为红色/青色眼镜的简单和广泛可用性,然而,这并不限制所提出的技术对其他立体形式的适用性。最后,我们提出了初步结果并讨论了面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic 2D to stereoscopic video conversion for 3D TVS
In this paper we present a novel technique for automatically converting 2D videos to stereoscopic. Uniquely, the proposed approach leverages the strengths of Deep Learning to address the complex problem of depth estimation from a single image. A Convolutional Neural Network is trained on input RGB images and their corresponding depths maps. We reformulate and simplify the process of generating the second camera's depth map and present how this can be used to render an anaglyph image. The anaglyph image was used for demonstration only because of the easy and wide availability of red/cyan glasses however, this does not limit the applicability of the proposed technique to other stereo forms. Finally, we present preliminary results and discuss the challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信