{"title":"弱舒尔数的一般下界","authors":"L. Boza, M.P. Revuelta, M.I. Sanz","doi":"10.1016/j.endm.2018.06.024","DOIUrl":null,"url":null,"abstract":"<div><p>For integers <em>k</em>, <em>n</em> with <span><math><mi>k</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>n</em>-<em>color weak Schur number</em> <span><math><mi>W</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is defined as the least integer <em>N</em>, such that for every <em>n</em>-coloring of the integer interval [1, <em>N</em>], there exists a monochromatic solution <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> in that interval to the equation <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, with <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, when <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span>. We show a relationship between <span><math><mi>W</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>W</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and a general lower bound on the <span><math><mi>W</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is obtained.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.024","citationCount":"4","resultStr":"{\"title\":\"A general lower bound on the weak Schur number\",\"authors\":\"L. Boza, M.P. Revuelta, M.I. Sanz\",\"doi\":\"10.1016/j.endm.2018.06.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For integers <em>k</em>, <em>n</em> with <span><math><mi>k</mi><mo>,</mo><mi>n</mi><mo>≥</mo><mn>1</mn></math></span>, the <em>n</em>-<em>color weak Schur number</em> <span><math><mi>W</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is defined as the least integer <em>N</em>, such that for every <em>n</em>-coloring of the integer interval [1, <em>N</em>], there exists a monochromatic solution <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> in that interval to the equation <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>, with <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span>, when <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span>. We show a relationship between <span><math><mi>W</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mi>W</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> and a general lower bound on the <span><math><mi>W</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is obtained.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.024\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157106531830115X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157106531830115X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
For integers k, n with , the n-color weak Schur number is defined as the least integer N, such that for every n-coloring of the integer interval [1, N], there exists a monochromatic solution in that interval to the equation , with , when . We show a relationship between and and a general lower bound on the is obtained.
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.