多尺度问题的统一Nyström/Galerkin方法

F. Vico, M. Ferrando-Bataller, E. Antonino-Daviu, M. Cabedo-Fabrés
{"title":"多尺度问题的统一Nyström/Galerkin方法","authors":"F. Vico, M. Ferrando-Bataller, E. Antonino-Daviu, M. Cabedo-Fabrés","doi":"10.23919/eucap53622.2022.9769089","DOIUrl":null,"url":null,"abstract":"Integral equation methods are widely used in computational electromagnetics (CEM). Galerkin and Nystrom are two possible schemes to discretize any integral equation. Among the CEM community, Galerkin is by far the most common scheme used. Nystrom has some advantages when dealing with second kind integral equations, nevertheless it has some disadvantages when dealing with multiscale geometries. In this paper we propose a fix for that and apply this to the Charge-current integral equation.","PeriodicalId":228461,"journal":{"name":"2022 16th European Conference on Antennas and Propagation (EuCAP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A unified Nyström/Galerkin method for for multiscale problems\",\"authors\":\"F. Vico, M. Ferrando-Bataller, E. Antonino-Daviu, M. Cabedo-Fabrés\",\"doi\":\"10.23919/eucap53622.2022.9769089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integral equation methods are widely used in computational electromagnetics (CEM). Galerkin and Nystrom are two possible schemes to discretize any integral equation. Among the CEM community, Galerkin is by far the most common scheme used. Nystrom has some advantages when dealing with second kind integral equations, nevertheless it has some disadvantages when dealing with multiscale geometries. In this paper we propose a fix for that and apply this to the Charge-current integral equation.\",\"PeriodicalId\":228461,\"journal\":{\"name\":\"2022 16th European Conference on Antennas and Propagation (EuCAP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 16th European Conference on Antennas and Propagation (EuCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eucap53622.2022.9769089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eucap53622.2022.9769089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

积分方程方法在计算电磁学中有着广泛的应用。Galerkin和Nystrom是任意积分方程离散化的两种可能格式。在CEM社区中,Galerkin是迄今为止最常用的方案。Nystrom在处理第二类积分方程时具有一定的优势,但在处理多尺度几何时存在一定的缺点。本文提出了一种修正方法,并将其应用于电荷-电流积分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified Nyström/Galerkin method for for multiscale problems
Integral equation methods are widely used in computational electromagnetics (CEM). Galerkin and Nystrom are two possible schemes to discretize any integral equation. Among the CEM community, Galerkin is by far the most common scheme used. Nystrom has some advantages when dealing with second kind integral equations, nevertheless it has some disadvantages when dealing with multiscale geometries. In this paper we propose a fix for that and apply this to the Charge-current integral equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信