{"title":"提高轻载效率的三相双向隔离DC-DC变换器的实现","authors":"N. S. M. Sharifuddin, N. Tan, C. L. Toh, A. Ramli","doi":"10.1109/IEACon51066.2021.9654573","DOIUrl":null,"url":null,"abstract":"Phase-Shift Modulation (PSM) strategy had been widely used in Three-Phase Bidirectional Isolated DC-DC Converter (3P-BIDC). Nevertheless, this conventional high frequency PSM method is more suitable for medium and rated load application. In light-load conditions (0-0.3 p.u.), the power efficiency may drop to less than 65%. Thus, this paper proposes an enhanced switching strategy by introducing a low frequency burst-mode signal to control the number of active PSM cycle over one burst cycle. A 150-V, 1.5-kW, 3P-BIDC prototype is developed for laboratory testing. This prototype is first evaluated with the conventional PSM strategy for wide range of loads. Then the proposed method is applied for light-load condition evaluation. The experimental results prove that an average of 90% power efficiency could be achieved under light load condition.","PeriodicalId":397039,"journal":{"name":"2021 IEEE Industrial Electronics and Applications Conference (IEACon)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Three-Phase Bidirectional Isolated DC-DC Converter with Improved Light-Load Efficiency\",\"authors\":\"N. S. M. Sharifuddin, N. Tan, C. L. Toh, A. Ramli\",\"doi\":\"10.1109/IEACon51066.2021.9654573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phase-Shift Modulation (PSM) strategy had been widely used in Three-Phase Bidirectional Isolated DC-DC Converter (3P-BIDC). Nevertheless, this conventional high frequency PSM method is more suitable for medium and rated load application. In light-load conditions (0-0.3 p.u.), the power efficiency may drop to less than 65%. Thus, this paper proposes an enhanced switching strategy by introducing a low frequency burst-mode signal to control the number of active PSM cycle over one burst cycle. A 150-V, 1.5-kW, 3P-BIDC prototype is developed for laboratory testing. This prototype is first evaluated with the conventional PSM strategy for wide range of loads. Then the proposed method is applied for light-load condition evaluation. The experimental results prove that an average of 90% power efficiency could be achieved under light load condition.\",\"PeriodicalId\":397039,\"journal\":{\"name\":\"2021 IEEE Industrial Electronics and Applications Conference (IEACon)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Industrial Electronics and Applications Conference (IEACon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEACon51066.2021.9654573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Industrial Electronics and Applications Conference (IEACon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEACon51066.2021.9654573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation of Three-Phase Bidirectional Isolated DC-DC Converter with Improved Light-Load Efficiency
Phase-Shift Modulation (PSM) strategy had been widely used in Three-Phase Bidirectional Isolated DC-DC Converter (3P-BIDC). Nevertheless, this conventional high frequency PSM method is more suitable for medium and rated load application. In light-load conditions (0-0.3 p.u.), the power efficiency may drop to less than 65%. Thus, this paper proposes an enhanced switching strategy by introducing a low frequency burst-mode signal to control the number of active PSM cycle over one burst cycle. A 150-V, 1.5-kW, 3P-BIDC prototype is developed for laboratory testing. This prototype is first evaluated with the conventional PSM strategy for wide range of loads. Then the proposed method is applied for light-load condition evaluation. The experimental results prove that an average of 90% power efficiency could be achieved under light load condition.