基于胶囊神经网络的网络钓鱼URL检测

Yongjie Huang, Jinghui Qin, Wushao Wen
{"title":"基于胶囊神经网络的网络钓鱼URL检测","authors":"Yongjie Huang, Jinghui Qin, Wushao Wen","doi":"10.1109/ICASID.2019.8925000","DOIUrl":null,"url":null,"abstract":"As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.","PeriodicalId":422125,"journal":{"name":"2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Phishing URL Detection Via Capsule-Based Neural Network\",\"authors\":\"Yongjie Huang, Jinghui Qin, Wushao Wen\",\"doi\":\"10.1109/ICASID.2019.8925000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.\",\"PeriodicalId\":422125,\"journal\":{\"name\":\"2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASID.2019.8925000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASID.2019.8925000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

网络钓鱼攻击作为一种利用社会工程等复杂技术窃取用户敏感信息的网络攻击,长期以来一直是对网络安全的重大威胁。尽管研究人员提出了许多对策,但由于这些对策需要大量的人工特征工程,并且不能很好地检测到新出现的网络钓鱼攻击,因此网络钓鱼犯罪分子最终都能找到规避措施,因此迫切需要开发一种高效有效的网络钓鱼检测方法。本文提出了一种新的网络钓鱼网站检测方法,通过检测网站的统一资源定位符(URL),该方法被证明是一种有效的检测方法。具体而言,我们的新型基于胶囊的神经网络主要包括多个并行分支,其中一个卷积层从url中提取浅特征,随后的两个胶囊层从浅特征中生成url的准确特征表示并区分url的合法性。我们方法的最终输出是通过对所有分支的输出求平均值得到的。在从互联网收集的经过验证的数据集上进行的大量实验表明,我们的方法可以在保持可容忍的时间开销的同时实现与其他最先进的检测方法的竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phishing URL Detection Via Capsule-Based Neural Network
As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信