关联数据的两步RDF查询处理

Yongju Lee, Changsu Kim
{"title":"关联数据的两步RDF查询处理","authors":"Yongju Lee, Changsu Kim","doi":"10.1109/RCIS.2017.7956576","DOIUrl":null,"url":null,"abstract":"Since RDF triples are modeled as graphs, we cannot directly adopt existing solutions from relational databases and XML technologies. Thus, there are still a number of open problems in the area of Linked Data. We present a hybrid method between centralized and distributed approaches. By using auxiliary indexes based on the MBB approximation, our approach can retrieve distributed Linked Data efficiently. The goal of our approach is to support efficient join query processing by quickly pruning unnecessary scanning data.","PeriodicalId":193156,"journal":{"name":"2017 11th International Conference on Research Challenges in Information Science (RCIS)","volume":"22 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-step RDF query processing for Linked Data\",\"authors\":\"Yongju Lee, Changsu Kim\",\"doi\":\"10.1109/RCIS.2017.7956576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since RDF triples are modeled as graphs, we cannot directly adopt existing solutions from relational databases and XML technologies. Thus, there are still a number of open problems in the area of Linked Data. We present a hybrid method between centralized and distributed approaches. By using auxiliary indexes based on the MBB approximation, our approach can retrieve distributed Linked Data efficiently. The goal of our approach is to support efficient join query processing by quickly pruning unnecessary scanning data.\",\"PeriodicalId\":193156,\"journal\":{\"name\":\"2017 11th International Conference on Research Challenges in Information Science (RCIS)\",\"volume\":\"22 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 11th International Conference on Research Challenges in Information Science (RCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RCIS.2017.7956576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 11th International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2017.7956576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于RDF三元组被建模为图,我们不能直接采用关系数据库和XML技术中的现有解决方案。因此,在关联数据领域仍然存在许多未解决的问题。我们提出了一种集中式和分布式方法的混合方法。通过使用基于MBB近似的辅助索引,我们的方法可以有效地检索分布式关联数据。我们方法的目标是通过快速修剪不必要的扫描数据来支持高效的连接查询处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-step RDF query processing for Linked Data
Since RDF triples are modeled as graphs, we cannot directly adopt existing solutions from relational databases and XML technologies. Thus, there are still a number of open problems in the area of Linked Data. We present a hybrid method between centralized and distributed approaches. By using auxiliary indexes based on the MBB approximation, our approach can retrieve distributed Linked Data efficiently. The goal of our approach is to support efficient join query processing by quickly pruning unnecessary scanning data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信