糖尿病视网膜病变的深度学习检测和分级

M. Berbar
{"title":"糖尿病视网膜病变的深度学习检测和分级","authors":"M. Berbar","doi":"10.21608/mjeer.2022.138003.1057","DOIUrl":null,"url":null,"abstract":"One of the complications of diabetes disease is diabetic retinopathy (DR). Diabetic patients may suffer from total loss of sight. That's if it is not detected and medicated early enough. The early detection of DR is very important during funds screening on a regular basis. Detection and grading of DR are difficult because most fundus images suffer from undersaturation and noise. This paper proposes a new enhancement process as a solution to the poor quality of fundus images. It also proposes two architectures for convolutional neural network (CNN) models. The first one is the binary classifier of DR images into normal and abnormal. The second CNN architecture to classify the severity grades of DR. In this study, we also utilized different pre-trained convolutional neural network models to show the impact on the performance of the use of transfer learning from pre-trained CNN models vs newly defined architectures. The pre-trained CNN models and the two new proposed CNN models are tested using Messidor1, Messidor2, and Kaggle EyePACS datasets. The proposed binary classifier model results in F1-scores of 0.9387, 0.9629, and 0.9430 on the Messidor-1, Messidor-2, and EyePACS datasets, respectively. The proposed second model classifies the five grades with an F1-score of 0.9133, 0.9226, and 0.9393 on the Messidor1, Messidor2, and Kaggle EyePACS datasets, respectively. The new proposed CNN model proved its reliability and efficiency in detecting DR and classifying severity grades of DR in fundus images. Preprocessing techniques enhanced the performance by 10.83% of accuracy and 0.13037 in AUC using the binary model. Keywords— Diabetic Retinopathy; Convolutional Neural Network; Fundus images; Deep learning.","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diabetic Retinopathy Detection and Grading using Deep learning\",\"authors\":\"M. Berbar\",\"doi\":\"10.21608/mjeer.2022.138003.1057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the complications of diabetes disease is diabetic retinopathy (DR). Diabetic patients may suffer from total loss of sight. That's if it is not detected and medicated early enough. The early detection of DR is very important during funds screening on a regular basis. Detection and grading of DR are difficult because most fundus images suffer from undersaturation and noise. This paper proposes a new enhancement process as a solution to the poor quality of fundus images. It also proposes two architectures for convolutional neural network (CNN) models. The first one is the binary classifier of DR images into normal and abnormal. The second CNN architecture to classify the severity grades of DR. In this study, we also utilized different pre-trained convolutional neural network models to show the impact on the performance of the use of transfer learning from pre-trained CNN models vs newly defined architectures. The pre-trained CNN models and the two new proposed CNN models are tested using Messidor1, Messidor2, and Kaggle EyePACS datasets. The proposed binary classifier model results in F1-scores of 0.9387, 0.9629, and 0.9430 on the Messidor-1, Messidor-2, and EyePACS datasets, respectively. The proposed second model classifies the five grades with an F1-score of 0.9133, 0.9226, and 0.9393 on the Messidor1, Messidor2, and Kaggle EyePACS datasets, respectively. The new proposed CNN model proved its reliability and efficiency in detecting DR and classifying severity grades of DR in fundus images. Preprocessing techniques enhanced the performance by 10.83% of accuracy and 0.13037 in AUC using the binary model. Keywords— Diabetic Retinopathy; Convolutional Neural Network; Fundus images; Deep learning.\",\"PeriodicalId\":218019,\"journal\":{\"name\":\"Menoufia Journal of Electronic Engineering Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Menoufia Journal of Electronic Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjeer.2022.138003.1057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2022.138003.1057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病视网膜病变是糖尿病的并发症之一。糖尿病患者可能会完全失明。这是在没有及早发现和治疗的情况下发生的。在基金定期筛查过程中,DR的早期发现非常重要。由于眼底图像存在欠饱和和噪声,DR的检测和分级比较困难。针对眼底图像质量差的问题,提出了一种新的增强方法。本文还提出了卷积神经网络(CNN)模型的两种架构。首先是将DR图像分为正常和异常的二值分类器。在本研究中,我们还使用不同的预训练卷积神经网络模型来展示使用预训练CNN模型与新定义架构的迁移学习对性能的影响。使用Messidor1、Messidor2和Kaggle EyePACS数据集对预训练的CNN模型和两个新提出的CNN模型进行了测试。所提出的二元分类器模型在Messidor-1、Messidor-2和EyePACS数据集上的f1得分分别为0.9387、0.9629和0.9430。本文提出的第二种模型对Messidor1、Messidor2和Kaggle EyePACS数据集上f1得分分别为0.9133、0.9226和0.9393的5个等级进行了分类。新提出的CNN模型在眼底图像DR检测和DR严重程度分类方面证明了其可靠性和有效性。预处理技术使二元模型的精度提高了10.83%,AUC提高了0.13037。关键词:糖尿病视网膜病变;卷积神经网络;眼底图像;深度学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetic Retinopathy Detection and Grading using Deep learning
One of the complications of diabetes disease is diabetic retinopathy (DR). Diabetic patients may suffer from total loss of sight. That's if it is not detected and medicated early enough. The early detection of DR is very important during funds screening on a regular basis. Detection and grading of DR are difficult because most fundus images suffer from undersaturation and noise. This paper proposes a new enhancement process as a solution to the poor quality of fundus images. It also proposes two architectures for convolutional neural network (CNN) models. The first one is the binary classifier of DR images into normal and abnormal. The second CNN architecture to classify the severity grades of DR. In this study, we also utilized different pre-trained convolutional neural network models to show the impact on the performance of the use of transfer learning from pre-trained CNN models vs newly defined architectures. The pre-trained CNN models and the two new proposed CNN models are tested using Messidor1, Messidor2, and Kaggle EyePACS datasets. The proposed binary classifier model results in F1-scores of 0.9387, 0.9629, and 0.9430 on the Messidor-1, Messidor-2, and EyePACS datasets, respectively. The proposed second model classifies the five grades with an F1-score of 0.9133, 0.9226, and 0.9393 on the Messidor1, Messidor2, and Kaggle EyePACS datasets, respectively. The new proposed CNN model proved its reliability and efficiency in detecting DR and classifying severity grades of DR in fundus images. Preprocessing techniques enhanced the performance by 10.83% of accuracy and 0.13037 in AUC using the binary model. Keywords— Diabetic Retinopathy; Convolutional Neural Network; Fundus images; Deep learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信