用时刻法学习对话动态

M. Barlier, R. Laroche, O. Pietquin
{"title":"用时刻法学习对话动态","authors":"M. Barlier, R. Laroche, O. Pietquin","doi":"10.1109/SLT.2016.7846251","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel framework to encode the dynamics of dialogues into a probabilistic graphical model. Traditionally, Hidden Markov Models (HMMs) would be used to address this problem, involving a first step of hand-crafting to build a dialogue model (e.g. defining potential hidden states) followed by applying expectation-maximisation (EM) algorithms to refine it. Recently, an alternative class of algorithms based on the Method of Moments (MoM) has proven successful in avoiding issues of the EM-like algorithms such as convergence towards local optima, tractability issues, initialization issues or the lack of theoretical guarantees. In this work, we show that dialogues may be modeled by SP-RFA, a class of graphical models efficiently learnable within the MoM and directly usable in planning algorithms (such as reinforcement learning). Experiments are led on the Ubuntu corpus and dialogues are considered as sequences of dialogue acts, represented by their Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA). We show that a MoM-based algorithm can learn a compact model of sequences of such acts.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning dialogue dynamics with the method of moments\",\"authors\":\"M. Barlier, R. Laroche, O. Pietquin\",\"doi\":\"10.1109/SLT.2016.7846251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a novel framework to encode the dynamics of dialogues into a probabilistic graphical model. Traditionally, Hidden Markov Models (HMMs) would be used to address this problem, involving a first step of hand-crafting to build a dialogue model (e.g. defining potential hidden states) followed by applying expectation-maximisation (EM) algorithms to refine it. Recently, an alternative class of algorithms based on the Method of Moments (MoM) has proven successful in avoiding issues of the EM-like algorithms such as convergence towards local optima, tractability issues, initialization issues or the lack of theoretical guarantees. In this work, we show that dialogues may be modeled by SP-RFA, a class of graphical models efficiently learnable within the MoM and directly usable in planning algorithms (such as reinforcement learning). Experiments are led on the Ubuntu corpus and dialogues are considered as sequences of dialogue acts, represented by their Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA). We show that a MoM-based algorithm can learn a compact model of sequences of such acts.\",\"PeriodicalId\":281635,\"journal\":{\"name\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2016.7846251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们引入了一个新的框架来将对话的动态编码为一个概率图模型。传统上,隐马尔可夫模型(hmm)将用于解决这个问题,包括手工制作构建对话模型的第一步(例如定义潜在的隐藏状态),然后应用期望最大化(EM)算法来完善它。最近,基于矩量法(MoM)的另一类算法被证明成功地避免了类似em算法的问题,如收敛到局部最优、可跟踪性问题、初始化问题或缺乏理论保证。在这项工作中,我们证明了对话可以通过SP-RFA建模,SP-RFA是一类可在MoM中有效学习的图形模型,可直接用于规划算法(如强化学习)。在Ubuntu语料库上进行了实验,将对话视为对话行为序列,并通过潜在狄利克雷分配(LDA)和潜在语义分析(LSA)来表示。我们证明了基于mom的算法可以学习这些行为序列的紧凑模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning dialogue dynamics with the method of moments
In this paper, we introduce a novel framework to encode the dynamics of dialogues into a probabilistic graphical model. Traditionally, Hidden Markov Models (HMMs) would be used to address this problem, involving a first step of hand-crafting to build a dialogue model (e.g. defining potential hidden states) followed by applying expectation-maximisation (EM) algorithms to refine it. Recently, an alternative class of algorithms based on the Method of Moments (MoM) has proven successful in avoiding issues of the EM-like algorithms such as convergence towards local optima, tractability issues, initialization issues or the lack of theoretical guarantees. In this work, we show that dialogues may be modeled by SP-RFA, a class of graphical models efficiently learnable within the MoM and directly usable in planning algorithms (such as reinforcement learning). Experiments are led on the Ubuntu corpus and dialogues are considered as sequences of dialogue acts, represented by their Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA). We show that a MoM-based algorithm can learn a compact model of sequences of such acts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信