基于多时相SAR图像相干和非相干特征的建筑变化检测

Hao Feng, Lu Zhang, M. Liao
{"title":"基于多时相SAR图像相干和非相干特征的建筑变化检测","authors":"Hao Feng, Lu Zhang, M. Liao","doi":"10.1109/Multi-Temp.2019.8866968","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method for building change detection using coherent and incoherent features of high resolution multi-temporal synthetic aperture radar (SAR) images. Three coherent and incoherent features are used to define pixel-level building change, while initial result is obtained through multi-threshold. After that, initial result is segmented into different areas based on the same time of change. Then, dynamic time warping (DTW) similarity measure is selected for binary classification in each area to separate it into changed and unchanged classes. Experimental result obtained from 10 TerraSAR-X Stripmap SAR images, shows the effective performance of the proposed approach.","PeriodicalId":106790,"journal":{"name":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Change Detection using Coherent and Incoherent Features from Multitemporal SAR Images\",\"authors\":\"Hao Feng, Lu Zhang, M. Liao\",\"doi\":\"10.1109/Multi-Temp.2019.8866968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method for building change detection using coherent and incoherent features of high resolution multi-temporal synthetic aperture radar (SAR) images. Three coherent and incoherent features are used to define pixel-level building change, while initial result is obtained through multi-threshold. After that, initial result is segmented into different areas based on the same time of change. Then, dynamic time warping (DTW) similarity measure is selected for binary classification in each area to separate it into changed and unchanged classes. Experimental result obtained from 10 TerraSAR-X Stripmap SAR images, shows the effective performance of the proposed approach.\",\"PeriodicalId\":106790,\"journal\":{\"name\":\"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Multi-Temp.2019.8866968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Multi-Temp.2019.8866968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用高分辨率多时相合成孔径雷达(SAR)图像的相干和非相干特征进行建筑变化检测的新方法。利用相干和非相干三个特征来定义像素级的建筑变化,通过多阈值获得初始结果。然后,根据相同的变化时间将初始结果分割成不同的区域。然后,采用动态时间规整(DTW)相似性测度对各区域进行二值分类,将其分为变化类和未变化类;对10幅TerraSAR-X Stripmap SAR图像的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building Change Detection using Coherent and Incoherent Features from Multitemporal SAR Images
In this paper, we propose a novel method for building change detection using coherent and incoherent features of high resolution multi-temporal synthetic aperture radar (SAR) images. Three coherent and incoherent features are used to define pixel-level building change, while initial result is obtained through multi-threshold. After that, initial result is segmented into different areas based on the same time of change. Then, dynamic time warping (DTW) similarity measure is selected for binary classification in each area to separate it into changed and unchanged classes. Experimental result obtained from 10 TerraSAR-X Stripmap SAR images, shows the effective performance of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信