机器学习方法在棋类游戏中的实现

Joanna Wiśniewska, Paweł Wójcik
{"title":"机器学习方法在棋类游戏中的实现","authors":"Joanna Wiśniewska, Paweł Wójcik","doi":"10.5604/01.3001.0015.9191","DOIUrl":null,"url":null,"abstract":"The following work presents methods of using machine learning to teach a computer to play chess. The first method is based on using records of games played by highly ranked players. The second method is based on the Monte Carlo Tree Search algorithm and reinforcement learning.\n\n","PeriodicalId":240434,"journal":{"name":"Computer Science and Mathematical Modelling","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning methods in game of chess implementation\",\"authors\":\"Joanna Wiśniewska, Paweł Wójcik\",\"doi\":\"10.5604/01.3001.0015.9191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The following work presents methods of using machine learning to teach a computer to play chess. The first method is based on using records of games played by highly ranked players. The second method is based on the Monte Carlo Tree Search algorithm and reinforcement learning.\\n\\n\",\"PeriodicalId\":240434,\"journal\":{\"name\":\"Computer Science and Mathematical Modelling\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science and Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5604/01.3001.0015.9191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0015.9191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下面的工作介绍了使用机器学习教计算机下棋的方法。第一种方法是基于高排名玩家的游戏记录。第二种方法是基于蒙特卡罗树搜索算法和强化学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning methods in game of chess implementation
The following work presents methods of using machine learning to teach a computer to play chess. The first method is based on using records of games played by highly ranked players. The second method is based on the Monte Carlo Tree Search algorithm and reinforcement learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信