李雅普诺夫方程的空间矩阵解

J. Pivnichny
{"title":"李雅普诺夫方程的空间矩阵解","authors":"J. Pivnichny","doi":"10.1109/CDC.1975.270713","DOIUrl":null,"url":null,"abstract":"It is well known [2, 3] that the nth order Lyapunov equation, AP+PA'=-Q, can be expanded to a n(n+1)/2 order linear vector equation and then solved using conventional linear equation methods. The purpose of this short paper is to present recent work on the sparceness of the resulting equation and the computational advantage of that sparceness, for large n.","PeriodicalId":164707,"journal":{"name":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparce matrix solution of the Lyapunov equation\",\"authors\":\"J. Pivnichny\",\"doi\":\"10.1109/CDC.1975.270713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known [2, 3] that the nth order Lyapunov equation, AP+PA'=-Q, can be expanded to a n(n+1)/2 order linear vector equation and then solved using conventional linear equation methods. The purpose of this short paper is to present recent work on the sparceness of the resulting equation and the computational advantage of that sparceness, for large n.\",\"PeriodicalId\":164707,\"journal\":{\"name\":\"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1975.270713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1975.270713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知[2,3],n阶Lyapunov方程AP+PA'=-Q可以展开为n(n+1)/2阶线性向量方程,然后用常规线性方程方法求解。这篇短文的目的是介绍最近关于结果方程的稀疏性的工作,以及对于大n的稀疏性的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparce matrix solution of the Lyapunov equation
It is well known [2, 3] that the nth order Lyapunov equation, AP+PA'=-Q, can be expanded to a n(n+1)/2 order linear vector equation and then solved using conventional linear equation methods. The purpose of this short paper is to present recent work on the sparceness of the resulting equation and the computational advantage of that sparceness, for large n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信