人脸识别与小型和大型数据库

J. Alcobé, M. Faúndez-Zanuy
{"title":"人脸识别与小型和大型数据库","authors":"J. Alcobé, M. Faúndez-Zanuy","doi":"10.1109/CCST.2005.1594843","DOIUrl":null,"url":null,"abstract":"This paper presents experimental results using the ORL (40 people) and FERET (994 people) databases. The ORL database can be useful for securing applications where few users attempting to access are expected. This is the case, for instance, of a PDA or PC where the password is the face of the user. On the other hand, the FERET database is useful for studying those situations where the number of authorized users is around a thousand people.","PeriodicalId":411051,"journal":{"name":"Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Face recognition with small and large size databases\",\"authors\":\"J. Alcobé, M. Faúndez-Zanuy\",\"doi\":\"10.1109/CCST.2005.1594843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents experimental results using the ORL (40 people) and FERET (994 people) databases. The ORL database can be useful for securing applications where few users attempting to access are expected. This is the case, for instance, of a PDA or PC where the password is the face of the user. On the other hand, the FERET database is useful for studying those situations where the number of authorized users is around a thousand people.\",\"PeriodicalId\":411051,\"journal\":{\"name\":\"Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.2005.1594843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual 2005 International Carnahan Conference on Security Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2005.1594843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文介绍了使用ORL(40人)和FERET(994人)数据库的实验结果。ORL数据库对于保护那些很少有用户试图访问的应用程序非常有用。例如,在PDA或PC中,密码就是用户的面孔。另一方面,FERET数据库对于研究授权用户数量在1000人左右的情况非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition with small and large size databases
This paper presents experimental results using the ORL (40 people) and FERET (994 people) databases. The ORL database can be useful for securing applications where few users attempting to access are expected. This is the case, for instance, of a PDA or PC where the password is the face of the user. On the other hand, the FERET database is useful for studying those situations where the number of authorized users is around a thousand people.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信