基于蚁群算法的乳腺癌细胞分类

Ahmed Nejmedine Machraoui, M. A. Cherni, M. Sayadi
{"title":"基于蚁群算法的乳腺癌细胞分类","authors":"Ahmed Nejmedine Machraoui, M. A. Cherni, M. Sayadi","doi":"10.1109/ICEESA.2013.6578445","DOIUrl":null,"url":null,"abstract":"Ant colony optimization (ACO) is a bio-inspired technique formalized into a meta-heuristic for combinatorial optimization problems. In this work, the ACO-Otsu segmentation method, based on ACO algorithm and Otsu's method as a fitness function, is applied in classification and detection of breast cancer cells. Subsequently, this method is compared with the Otsu's standard method. The experiments show the performance of this probabilistic search approach in such type of problems.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Ant Colony optimization algorithm for breast cancer cells classification\",\"authors\":\"Ahmed Nejmedine Machraoui, M. A. Cherni, M. Sayadi\",\"doi\":\"10.1109/ICEESA.2013.6578445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant colony optimization (ACO) is a bio-inspired technique formalized into a meta-heuristic for combinatorial optimization problems. In this work, the ACO-Otsu segmentation method, based on ACO algorithm and Otsu's method as a fitness function, is applied in classification and detection of breast cancer cells. Subsequently, this method is compared with the Otsu's standard method. The experiments show the performance of this probabilistic search approach in such type of problems.\",\"PeriodicalId\":212631,\"journal\":{\"name\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Electrical Engineering and Software Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEESA.2013.6578445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

蚁群优化(蚁群优化)是一种生物启发技术,形式化为组合优化问题的元启发式。本文将ACO-Otsu分割方法应用于乳腺癌细胞的分类和检测,该方法以ACO算法为基础,以Otsu方法为适应度函数。随后,将该方法与Otsu的标准方法进行了比较。实验证明了这种概率搜索方法在这类问题中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ant Colony optimization algorithm for breast cancer cells classification
Ant colony optimization (ACO) is a bio-inspired technique formalized into a meta-heuristic for combinatorial optimization problems. In this work, the ACO-Otsu segmentation method, based on ACO algorithm and Otsu's method as a fitness function, is applied in classification and detection of breast cancer cells. Subsequently, this method is compared with the Otsu's standard method. The experiments show the performance of this probabilistic search approach in such type of problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信