{"title":"集成神经网络在脓毒症早期诊断中的预测和隐私改进","authors":"Shigehiko Schamoni, M. Hagmann, S. Riezler","doi":"10.48550/arXiv.2209.00439","DOIUrl":null,"url":null,"abstract":"Ensembling neural networks is a long-standing technique for improving the generalization error of neural networks by combining networks with orthogonal properties via a committee decision. We show that this technique is an ideal fit for machine learning on medical data: First, ensembles are amenable to parallel and asynchronous learning, thus enabling efficient training of patient-specific component neural networks. Second, building on the idea of minimizing generalization error by selecting uncorrelated patient-specific networks, we show that one can build an ensemble of a few selected patient-specific models that outperforms a single model trained on much larger pooled datasets. Third, the non-iterative ensemble combination step is an optimal low-dimensional entry point to apply output perturbation to guarantee the privacy of the patient-specific networks. We exemplify our framework of differentially private ensembles on the task of early prediction of sepsis, using real-life intensive care unit data labeled by clinical experts.","PeriodicalId":231229,"journal":{"name":"Machine Learning in Health Care","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ensembling Neural Networks for Improved Prediction and Privacy in Early Diagnosis of Sepsis\",\"authors\":\"Shigehiko Schamoni, M. Hagmann, S. Riezler\",\"doi\":\"10.48550/arXiv.2209.00439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensembling neural networks is a long-standing technique for improving the generalization error of neural networks by combining networks with orthogonal properties via a committee decision. We show that this technique is an ideal fit for machine learning on medical data: First, ensembles are amenable to parallel and asynchronous learning, thus enabling efficient training of patient-specific component neural networks. Second, building on the idea of minimizing generalization error by selecting uncorrelated patient-specific networks, we show that one can build an ensemble of a few selected patient-specific models that outperforms a single model trained on much larger pooled datasets. Third, the non-iterative ensemble combination step is an optimal low-dimensional entry point to apply output perturbation to guarantee the privacy of the patient-specific networks. We exemplify our framework of differentially private ensembles on the task of early prediction of sepsis, using real-life intensive care unit data labeled by clinical experts.\",\"PeriodicalId\":231229,\"journal\":{\"name\":\"Machine Learning in Health Care\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning in Health Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.00439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning in Health Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.00439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ensembling Neural Networks for Improved Prediction and Privacy in Early Diagnosis of Sepsis
Ensembling neural networks is a long-standing technique for improving the generalization error of neural networks by combining networks with orthogonal properties via a committee decision. We show that this technique is an ideal fit for machine learning on medical data: First, ensembles are amenable to parallel and asynchronous learning, thus enabling efficient training of patient-specific component neural networks. Second, building on the idea of minimizing generalization error by selecting uncorrelated patient-specific networks, we show that one can build an ensemble of a few selected patient-specific models that outperforms a single model trained on much larger pooled datasets. Third, the non-iterative ensemble combination step is an optimal low-dimensional entry point to apply output perturbation to guarantee the privacy of the patient-specific networks. We exemplify our framework of differentially private ensembles on the task of early prediction of sepsis, using real-life intensive care unit data labeled by clinical experts.