S. Thajchayapong, J. Barria, Javier S. García-Treviño
{"title":"基于微观交通变量的车道级交通估计","authors":"S. Thajchayapong, J. Barria, Javier S. García-Treviño","doi":"10.1109/ITSC.2010.5625191","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.","PeriodicalId":176645,"journal":{"name":"13th International IEEE Conference on Intelligent Transportation Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Lane-level traffic estimations using microscopic traffic variables\",\"authors\":\"S. Thajchayapong, J. Barria, Javier S. García-Treviño\",\"doi\":\"10.1109/ITSC.2010.5625191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.\",\"PeriodicalId\":176645,\"journal\":{\"name\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International IEEE Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2010.5625191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International IEEE Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2010.5625191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lane-level traffic estimations using microscopic traffic variables
This paper proposes a novel inference method to estimate lane-level traffic flow, time occupancy and vehicle inter-arrival time on road segments where local information could not be measured and assessed directly. The main contributions of the proposed method are 1) the ability to perform lane-level estimations of traffic flow, time occupancy and vehicle inter-arrival time and 2) the ability to adapt to different traffic regimes by assessing only microscopic traffic variables. We propose a modified Kriging estimation model which explicitly takes into account both spatial and temporal variability. Performance evaluations are conducted using real-world data under different traffic regimes and it is shown that the proposed method outperforms a Kalman filter-based approach.