CRF-net:使用cnn的单图像辐射校准

Han Li, P. Peers
{"title":"CRF-net:使用cnn的单图像辐射校准","authors":"Han Li, P. Peers","doi":"10.1145/3150165.3150170","DOIUrl":null,"url":null,"abstract":"In this paper we present CRF-net, a CNN-based solution for estimating the camera response function from a single photograph. We follow the recent trend of using synthetic training data, and generate a large set of training pairs based on a small set of radio-metrically linear images and the DoRF database of camera response functions. The resulting CRF-net estimates the parameters of the EMoR camera response model directly from a single photograph. Experimentally, we show that CRF-net is able to accurately recover the camera response function from a single photograph under a wide range of conditions.","PeriodicalId":412591,"journal":{"name":"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"CRF-net: Single Image Radiometric Calibration using CNNs\",\"authors\":\"Han Li, P. Peers\",\"doi\":\"10.1145/3150165.3150170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present CRF-net, a CNN-based solution for estimating the camera response function from a single photograph. We follow the recent trend of using synthetic training data, and generate a large set of training pairs based on a small set of radio-metrically linear images and the DoRF database of camera response functions. The resulting CRF-net estimates the parameters of the EMoR camera response model directly from a single photograph. Experimentally, we show that CRF-net is able to accurately recover the camera response function from a single photograph under a wide range of conditions.\",\"PeriodicalId\":412591,\"journal\":{\"name\":\"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3150165.3150170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3150165.3150170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们提出了一种基于cnn的解决方案,用于从单张照片估计相机响应函数。我们遵循了最近使用合成训练数据的趋势,并基于一小组放射度量线性图像和相机响应函数的DoRF数据库生成了一组大的训练对。所得到的crf网络直接从一张照片中估计EMoR相机响应模型的参数。实验结果表明,该方法能够在多种条件下准确地恢复单张照片的相机响应函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CRF-net: Single Image Radiometric Calibration using CNNs
In this paper we present CRF-net, a CNN-based solution for estimating the camera response function from a single photograph. We follow the recent trend of using synthetic training data, and generate a large set of training pairs based on a small set of radio-metrically linear images and the DoRF database of camera response functions. The resulting CRF-net estimates the parameters of the EMoR camera response model directly from a single photograph. Experimentally, we show that CRF-net is able to accurately recover the camera response function from a single photograph under a wide range of conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信