P. Francese, T. Toifl, P. Buchmann, M. Brandli, M. Kossel, C. Menolfi, T. Morf, L. Kull, T. Andersen, A. Cevrero
{"title":"16Gb/s 3.7mW/Gb/s 8分接DFE接收机,波特率CDR,跟踪带宽30kppm","authors":"P. Francese, T. Toifl, P. Buchmann, M. Brandli, M. Kossel, C. Menolfi, T. Morf, L. Kull, T. Andersen, A. Cevrero","doi":"10.1109/ASSCC.2013.6690975","DOIUrl":null,"url":null,"abstract":"The circuit presented is a power-efficient implementation of a 16 Gb/s I/O link NRZ receiver in 22 nm CMOS SOI. A CTLE feeds an 8-tap DFE for ISI equalization. The first tap uses digital speculation and the following seven taps are realized with switched-capacitor technique. Timing recovery and control are performed with a Mueller-Müller type-A baud rate CDR. The receiver architecture is half rate and requires only a single phase rotator. In total, six comparators in each even/odd signal path slice recover both data and timing information. The timing information extraction requires four additional comparators per slice in parallel to the two required by the first-tap DFE speculation. The CDR digital section operates at quarter rate and features a low-latency implementation for the timing control loop. At 16 Gb/s, 1 Vppd PRBS31 data transmitted without FFE equalization are recovered error-free (BER <; 10-12) across a PCB channel with 34 dB attenuation at 8 GHz. The measured tracking bandwidth is 30 kppm (16 GHz ±480 MHz), and an amplitude of 3 UIPP is tolerated at 1 MHz sinusoidal jitter. The sinusoidal jitter amplitude tolerance measured at 10 Gb/s is 0.4 UIPP at 10 MHz and remains above 0.2 UIPP up to 1 GHz with PRBS31 data recovered error-free (BER<; 10-12) across a PCB channel with 27 dB attenuation at 5 GHz. The power efficiency is 3.7 mW/Gb/s, including the full-rate clock receiver.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"2002 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A 16Gb/s 3.7mW/Gb/s 8-tap DFE receiver and baud rate CDR with 30kppm tracking bandwidth\",\"authors\":\"P. Francese, T. Toifl, P. Buchmann, M. Brandli, M. Kossel, C. Menolfi, T. Morf, L. Kull, T. Andersen, A. Cevrero\",\"doi\":\"10.1109/ASSCC.2013.6690975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The circuit presented is a power-efficient implementation of a 16 Gb/s I/O link NRZ receiver in 22 nm CMOS SOI. A CTLE feeds an 8-tap DFE for ISI equalization. The first tap uses digital speculation and the following seven taps are realized with switched-capacitor technique. Timing recovery and control are performed with a Mueller-Müller type-A baud rate CDR. The receiver architecture is half rate and requires only a single phase rotator. In total, six comparators in each even/odd signal path slice recover both data and timing information. The timing information extraction requires four additional comparators per slice in parallel to the two required by the first-tap DFE speculation. The CDR digital section operates at quarter rate and features a low-latency implementation for the timing control loop. At 16 Gb/s, 1 Vppd PRBS31 data transmitted without FFE equalization are recovered error-free (BER <; 10-12) across a PCB channel with 34 dB attenuation at 8 GHz. The measured tracking bandwidth is 30 kppm (16 GHz ±480 MHz), and an amplitude of 3 UIPP is tolerated at 1 MHz sinusoidal jitter. The sinusoidal jitter amplitude tolerance measured at 10 Gb/s is 0.4 UIPP at 10 MHz and remains above 0.2 UIPP up to 1 GHz with PRBS31 data recovered error-free (BER<; 10-12) across a PCB channel with 27 dB attenuation at 5 GHz. The power efficiency is 3.7 mW/Gb/s, including the full-rate clock receiver.\",\"PeriodicalId\":296544,\"journal\":{\"name\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"2002 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2013.6690975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6690975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 16Gb/s 3.7mW/Gb/s 8-tap DFE receiver and baud rate CDR with 30kppm tracking bandwidth
The circuit presented is a power-efficient implementation of a 16 Gb/s I/O link NRZ receiver in 22 nm CMOS SOI. A CTLE feeds an 8-tap DFE for ISI equalization. The first tap uses digital speculation and the following seven taps are realized with switched-capacitor technique. Timing recovery and control are performed with a Mueller-Müller type-A baud rate CDR. The receiver architecture is half rate and requires only a single phase rotator. In total, six comparators in each even/odd signal path slice recover both data and timing information. The timing information extraction requires four additional comparators per slice in parallel to the two required by the first-tap DFE speculation. The CDR digital section operates at quarter rate and features a low-latency implementation for the timing control loop. At 16 Gb/s, 1 Vppd PRBS31 data transmitted without FFE equalization are recovered error-free (BER <; 10-12) across a PCB channel with 34 dB attenuation at 8 GHz. The measured tracking bandwidth is 30 kppm (16 GHz ±480 MHz), and an amplitude of 3 UIPP is tolerated at 1 MHz sinusoidal jitter. The sinusoidal jitter amplitude tolerance measured at 10 Gb/s is 0.4 UIPP at 10 MHz and remains above 0.2 UIPP up to 1 GHz with PRBS31 data recovered error-free (BER<; 10-12) across a PCB channel with 27 dB attenuation at 5 GHz. The power efficiency is 3.7 mW/Gb/s, including the full-rate clock receiver.