利用遗传算法优化软件测试

Praveen Ranjan Srivastava
{"title":"利用遗传算法优化软件测试","authors":"Praveen Ranjan Srivastava","doi":"10.1504/IJAISC.2009.027301","DOIUrl":null,"url":null,"abstract":"Software testing is meant to increase confidence in the correctness of software. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve the required test coverage. This paper proposes Genetic Algorithm (GA) to test data generation for optimising the software testing.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Optimisation of software testing using Genetic Algorithm\",\"authors\":\"Praveen Ranjan Srivastava\",\"doi\":\"10.1504/IJAISC.2009.027301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software testing is meant to increase confidence in the correctness of software. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve the required test coverage. This paper proposes Genetic Algorithm (GA) to test data generation for optimising the software testing.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2009.027301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2009.027301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

软件测试的目的是增加对软件正确性的信心。测试数据的生成是软件测试中的关键问题之一。正确生成的测试套件不仅可以定位软件系统中的错误,还可以帮助减少与软件测试相关的高成本。通常需要在测试套件中以测试序列的形式自动生成测试数据,以实现所需的测试覆盖率。为了优化软件测试,提出了一种基于遗传算法的测试数据生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation of software testing using Genetic Algorithm
Software testing is meant to increase confidence in the correctness of software. Test data generation is one of the key issues in software testing. A properly generated test suite may not only locate the errors in a software system, but also help in reducing the high cost associated with software testing. It is often desired that test data in the form of test sequences within a test suite can be automatically generated to achieve the required test coverage. This paper proposes Genetic Algorithm (GA) to test data generation for optimising the software testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信